Nothing Special   »   [go: up one dir, main page]

Skip to main content

Android IR - Full-Text Search for Android

  • Conference paper
  • First Online:
Recent Advances in Information and Communication Technology 2017 (IC2IT 2017)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 566))

Included in the following conference series:

  • 838 Accesses

Abstract

Modern mobile devices such as smartphones concentrate information from various sources that provide textual contents, mainly in the form of e-mails, short and instant messages, web documents and social network posts. While the respective apps make it especially easy to intuitively consume and create such contents, the analysis of large amounts of natural language text on mobile devices is still uncommon, although their hardware is mostly powerful enough to carry out this task. This paper presents with Android IR a first solution for effective and power-saving full-text search on Android devices. Its features and working principles are described in detail. Furthermore, the app’s performance is evaluated using real-world text documents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Interested readers can download Android IR (16.8 MB; installation of apps from unknown sources must be allowed in security settings) from: http://www.docanalyser.de/androidir.apk.

References

  1. Statista: Daten und Statistiken zu WhatsApp (2016). https://de.statista.com/themen/1995/whatsapp/

  2. Novet, J.: Facebook says people sent 63 billion WhatsApp messages on New Year’s Eve (2017). http://venturebeat.com/2017/01/06/facebook-says-people-sent-63-billion-whatsapp-messages-on-new-years-eve/

  3. Statista: Monatliches Datenvolumen des privaten Internet-Traffics in den Jahren 2014 und 2015 sowie eine Prognose bis 2020 nach Segmenten (in Petabyte) (2016). https://de.statista.com/statistik/daten/studie/152551/umfrage/prognose-zum-internet-traffic-nach-segment/

  4. Wachsmuth, H.: Text Analysis Pipelines: Towards Ad-Hoc Large-Scale Text Mining. Springer, Cham (2006)

    Google Scholar 

  5. Tsai, F.S., et al.: Introduction to mobile information retrieval. IEEE Intell. Syst. 25(1), 11–15 (2010)

    Article  Google Scholar 

  6. Sateli, B., Cook, G., Witte, R.: Smarter mobile apps through integrated natural language processing services. In: Mobile Web and Information Systems: 10th International Conference, MobiWIS 2013, pp. 187–202. Springer (2013)

    Google Scholar 

  7. Gaber, M.M., Stahl, F., Gomes, J.B.: Pocket Data Mining: Big Data on Small Devices. Springer, Cham (2014)

    Book  Google Scholar 

  8. International Data Corporation: Smartphone OS Market Share, 2016 Q3 (2016). http://www.idc.com/promo/smartphone-market-share/os

  9. Ramakrishnan, C., et al.: Layout-aware text extraction from full-text PDF of scientific articles. Sour. Code Biol. Med. 7(1), 7 (2012)

    Article  Google Scholar 

  10. Schweda, R.: Automatische Sprachverarbeitung und Information Retrieval unter Android. Master’s thesis, FernUniversität in Hagen (2015)

    Google Scholar 

  11. Biemann, C.: Chinese whispers: an efficient graph clustering algorithm and its application to natural language processing problems. In: Proceedings of the HLT-NAACL-06 Workshop on Textgraphs 2006, pp. 73–80. ACL, New York City (2006)

    Google Scholar 

  12. Kubek, M., Unger, H., Loauschasai, T.: A quality- and security-improved web search using local agents. Intl. J. Res. Eng. Technol. (IJRET) 1(6) (2012)

    Google Scholar 

  13. Efer, T.: Text mining with graph databases: traversal of persisted token-level representations for flexible on-demand processing. In: Autonomous Systems 2015, Fortschritt-Berichte VDI, vol. 10, no. 842, pp. 157–167. VDI-Verlag, Düsseldorf (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Kubek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Kubek, M., Schweda, R., Unger, H. (2018). Android IR - Full-Text Search for Android. In: Meesad, P., Sodsee, S., Unger, H. (eds) Recent Advances in Information and Communication Technology 2017. IC2IT 2017. Advances in Intelligent Systems and Computing, vol 566. Springer, Cham. https://doi.org/10.1007/978-3-319-60663-7_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60663-7_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60662-0

  • Online ISBN: 978-3-319-60663-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics