Nothing Special   »   [go: up one dir, main page]

Skip to main content

An Energy-Aware Learning Agent for Power Management in Mobile Devices

  • Conference paper
  • First Online:
Advances in Artificial Intelligence: From Theory to Practice (IEA/AIE 2017)

Abstract

The optimization of the energy consumption in mobile devices can be performed on hardware and software components. For example, reducing the screen brightness or switching off GPS. The energy control must take into account both the current context and user habits, on the base of usage knowledge acquired from sensors and OS data records. The whole process of energy management then includes data collection, usage learning and analysis, decision-making and control of device components. To integrate these activities, we propose to use a software agent whose goal is to save the energy of the mobile device with the lowest effect on QoS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chaib-Draa, I., Niar, S., Tayeb, J., Grislin, E., Desertot, M.: Sensing user context and habits for run-time energy optimization. EURASIP J. Embed. Syst. 2017, 4 (2017)

    Article  Google Scholar 

  2. Cho, H., Mandava, D., Liu, Q., Chen, L., Jeong, S., Cheng, D.: Situation-aware on mobile phone using co-clustering: algorithms and extensions. In: Jiang, H., Ding, W., Ali, M., Wu, X. (eds.) IEA/AIE 2012. LNCS, vol. 7345, pp. 272–282. Springer, Heidelberg (2012). doi:10.1007/978-3-642-31087-4_29

    Chapter  Google Scholar 

  3. Hao, W., Fu, J., Delaney, T., Trenkamp, C.: Cloud-based power management for mobile phones. In: SEDE Proceedings, pp. 149–154 (2012)

    Google Scholar 

  4. Klein, L., Kwak, J., Kavulya, G., Jazizadeh, F., Becerik-Gerber, B., Varakantham, P., Tambe, M.: Coordinating occupant behavior for building energy and comfort management using multi-agent systems. Autom. Construct. 22, 525–536 (2012)

    Article  Google Scholar 

  5. Li, C., Li, L.: Collaboration among mobile agents for efficient energy allocation in mobile grid. Inf. Syst. Front. 14(3), 711–723 (2012)

    Article  Google Scholar 

  6. Palaniappan, S., Chellan, K.: Energy-efficient stable routing using QOS monitoring agents in manet. EURASIP J. Wirel. Com. Netw. 1, 1–11 (2015)

    Google Scholar 

  7. Pérez-Torres, R., Torres-Huitzil, C., Galeana-Zapién, H.: Power management techniques in smartphone-based mobility sensing systems: a survey. Pervasive Mob. Comput. 31, 1–21 (2016)

    Article  Google Scholar 

  8. Petit-Rozé, C., Grislin-Le Strugeon, E.: MAPIS, a multi-agent system for information personalization. Inf. Softw. Technol. 48, 107–120 (2006)

    Article  Google Scholar 

  9. Vallina-Rodriguez, N., Crowcroft, J.: Energy management techniques in modern mobile handsets. IEEE Commun. Surv. Tutorials 15(1), 179–198 (2013)

    Article  Google Scholar 

  10. Vrba, P., Marik, V., Siano, P., Leitao, P., Zhabelova, G., Vyatkin, V., Strasser, T.: A review of agent and service-oriented concepts applied to intelligent energy systems. IEEE Trans. Ind. Informatics 10(3), 1890–1903 (2014)

    Article  Google Scholar 

  11. Xu, C., Lin, F., Wang, Y., Zhong, L.: Automated OS-level device runtime power management. ACM SIGPLAN Notices 50(4), 239–252 (2015)

    Article  Google Scholar 

Download references

Acknowledgment

The authors would like to thank Intel Corporation and especially the Intel Research Council for the support given to this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ismat Chaib Draa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Chaib Draa, I., Grislin-Le Strugeon, E., Niar, S. (2017). An Energy-Aware Learning Agent for Power Management in Mobile Devices. In: Benferhat, S., Tabia, K., Ali, M. (eds) Advances in Artificial Intelligence: From Theory to Practice. IEA/AIE 2017. Lecture Notes in Computer Science(), vol 10350. Springer, Cham. https://doi.org/10.1007/978-3-319-60042-0_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60042-0_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60041-3

  • Online ISBN: 978-3-319-60042-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics