Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Mixed Integer Programming Reformulation of the Mixed Fruit-Vegetable Crop Allocation Problem

  • Conference paper
  • First Online:
Advances in Artificial Intelligence: From Theory to Practice (IEA/AIE 2017)

Abstract

Mixed fruit-vegetable cropping systems are a promising way of ensuring environmentally sustainable agricultural production systems in response to the challenge of being able to fulfill local market requirements. Indeed, they combine productions and they make a better use of biodiversity. These agroforestry systems are based on a complex set of interactions modifying the utilization of light, water and nutrients. Thus, designing such a system must optimize the use of these resources: by maximizing positive interactions (facilitation) and minimizing negative ones (competition). To attain these objectives, the system’s design has to include the spatial and temporal dimensions, taking into account the evolution of above- and belowground interactions over a time horizon. For that, we define the Mixed Fruit-Vegetable Crop Allocation Problem (MFVCAP) using a discrete representation of the land and the interactions between vegetable crops and fruit trees. First, we give a direct formulation as a binary quadratic program (BQP). Then we reformulate the problem using a Benders decomposition approach. The master problem has 0/1 binary variables and deals with tree positioning. The subproblem deals with crop quantities. The BQP objective function becomes linear in the continuous subproblem by exploiting the fact that it depends only on the quantity of crops assigned to land units having shade, root, or nothing. This problem decomposition allows us to reformulate the MFVCAP into a Mixed Integer linear Program (MIP). The detailed spatial-temporal crop allocation plan is easy to obtain after solving the MIP. Experimental results show the efficiency of our approach compared to a direct solving of the original BQP formulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Minimizing the y-axis distance first, then the x-axis. See Algorithm 1 lines 1 and 2.

References

  1. Akplogan, M., De Givry, S., Metivier, J.P., Quesnel, G., Joannon, A., Garcia, F.: Solving the crop allocation problem using hard and soft constraints. RAIRO Oper. Res. 47(2), 151–172 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alfandari, L., Lemalade, J., Nagih, A., Plateau, G.: A MIP flow model for crop-rotation planning in a context of forest sustainable development. Ann. Oper. Res. 190(1), 149–164 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alfandari, L., Plateau, A., Schepler, X.: A branch-and-price-and-cut approach for sustainable crop rotation planning. Eur. J. Oper. Res. 241(3), 872–879 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Batish, D., Kohli, R., Jose, S., Singh, H.: Ecological Basis of Agroforestry. CRC Press, New York (2007)

    Book  Google Scholar 

  5. Benders, J.F.: Partitioning procedures for solving mixed-variables programming problems. Numerische mathematik 4(1), 238–252 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  6. Detlefsen, N.K., Jensen, A.L.: Modelling optimal crop sequences using network flows. Agric. Syst. 94(2), 566–572 (2007)

    Article  Google Scholar 

  7. Dury, J., Schaller, N., Garcia, F., Reynaud, A., Bergez, J.E.: Models to support cropping plan and crop rotation decisions. A review. Agron. Sustain. Dev. 32(2), 567–580 (2012)

    Article  Google Scholar 

  8. El-Nazer, T., McCarl, B.A.: The choice of crop rotation: a modeling approach and case study. Am. J. Agric. Econ. 68(1), 127–136 (1986)

    Article  Google Scholar 

  9. Glen, J.: Mathematical models in farm planning: a survey. Oper. Res. 35(5), 641–666 (1987)

    Article  Google Scholar 

  10. Haneveld, W.K., Stegeman, A.W.: Crop succession requirements in agricultural production planning. Eur. J. Oper. Res. 166(2), 406–429 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Jose, S., Gillespie, A.R., Pallardy, S.G.: Interspecific interactions in temperate agroforestry. In: Nair, P.K.R., Rao, M.R., Buck, L.E. (eds.) New Vistas in Agroforestry, pp. 237–255. Springer, Dordrecht (2004)

    Chapter  Google Scholar 

  12. Kulturel-Konak, S., Konak, A.: Linear programming based genetic algorithm for the unequal area facility layout problem. Int. J. Prod. Res. 51(14), 4302–4324 (2013)

    Article  MATH  Google Scholar 

  13. Lbbecke, M.E., Desrosiers, J.: Selected topics in column generation. Oper. Res. 53(6), 1007–1023 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Maniezzo, V., Sttzle, T. (eds.): Matheuristics. IRIDIA, Brussels (2016)

    Google Scholar 

  15. Maqrot, S., de Givry, S., Quesnel, G., Tchamitchian, M.: Designing mixed fruit-vegetable cropping systems by integer quadratic programming. In: Proceedings of iEMSs, Toulouse (2016)

    Google Scholar 

  16. Rahmaniani, R., Crainic, T.G., Gendreau, M., Rei, W.: The benders decomposition algorithm: a literature review. EJOR 259(3), 801–817 (2017)

    Article  MathSciNet  Google Scholar 

  17. dos Santos, L.M.R., Costa, A.M., Arenales, M.N., Santos, R.H.S.: Sustainable vegetable crop supply problem. Eur. J. Oper. Res. 204(3), 639–647 (2010)

    Article  MATH  Google Scholar 

  18. dos Santos, L.M.R., Michelon, P., Arenales, M.N., Santos, R.H.S.: Crop rotation scheduling with adjacency constraints. Ann. Oper. Res. 190(1), 165–180 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Stone, N., Buick, R., Roach, J., Scheckler, R., Rupani, R.: The planning problem in agriculture: farm-level crop rotation planning as an example. In: AI Applications in Natural Resource Management, USA (1992)

    Google Scholar 

  20. Taillandier, P., Therond, O., Gaudou, B.: A new BDI agent architecture based on the belief theory. Application to the modelling of cropping plan decision-making. In: International environmental modelling and software society (iEMSs), Leipzig (2012)

    Google Scholar 

  21. Tchamitchian, M., Godin, E.: Designing mixed horticultural systems. Build. Org. Bridges 1, 179–182 (2014)

    Google Scholar 

  22. Vercambre, G., Pag, L., Doussan, C., Habib, R.: Architectural analysis and synthesis of the plum tree root system in an orchard using a quantitative modelling approach. Plant Soil 251(1), 1–11 (2003)

    Article  Google Scholar 

  23. Weaver, J.E., Bruner, W.E.: Root Development of Vegetable Crops, 1st edn. Mcgraw-Hill Book Co., London (1927)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon de Givry .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Maqrot, S., de Givry, S., Quesnel, G., Tchamitchian, M. (2017). A Mixed Integer Programming Reformulation of the Mixed Fruit-Vegetable Crop Allocation Problem. In: Benferhat, S., Tabia, K., Ali, M. (eds) Advances in Artificial Intelligence: From Theory to Practice. IEA/AIE 2017. Lecture Notes in Computer Science(), vol 10351. Springer, Cham. https://doi.org/10.1007/978-3-319-60045-1_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60045-1_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60044-4

  • Online ISBN: 978-3-319-60045-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics