Nothing Special   »   [go: up one dir, main page]

Skip to main content

Phishing Website Detection Based on Effective CSS Features of Web Pages

  • Conference paper
  • First Online:
Wireless Algorithms, Systems, and Applications (WASA 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10251))

Abstract

In a web-based phishing attack, an attacker sets up scam web pages to deceive users to input their sensitive information. The appearance of web pages plays an important role in deceiving users, and thus is a critical metric for detecting phishing web sites. In this paper, we propose a robust phishing page detection mechanism based on web pages’ visual similarity. To measure the similarity of the suspicious pages and victim pages accurately, we extract features from the Cascading Style Sheet (CSS) of web pages, and select the effective feature sets for similarity rating. We prototyped our approach in the Google Chrome browser and used it to analyze suspicious web pages. The proof of concept implementation verifies the effectiveness of our algorithm with a low performance overhead.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. PhishMe Q1 2016 malware review (2016). https://phishme.com/project/phishme-q1-2016-malware-review/

  2. Abbasi, A., Zahedi, F.M., Zeng, D.: Enhancing predictive analytics for anti-phishing by exploiting website genre information. J. Manag. Inf. Syst. 31(4), 109–157 (2015)

    Article  Google Scholar 

  3. Belabed, A., Aimeur, E., Chikh, A.: A personalized whitelist approach for phishing webpage detection. In: 7th International Conference on Availability, Reliability and Security (ARES), Prague, pp. 249–254. IEEE, August 2012

    Google Scholar 

  4. Bottazzi, G., Casalicchio, E., Cingolani, D., Marturana, F., Piu, M.: MP-shield: a framework for phishing detection in mobile devices. In: Proceedings - 15th IEEE International Conference on Computer and Information Technology, CIT 2015, 14th IEEE International Conference on Ubiquitous Computing and Communications, IUCC 2015, 13th IEEE International Conference on Dependable, Autonomic and SE, pp. 1977–1983 (2015)

    Google Scholar 

  5. Chen, T.-C., Dick, S., Miller, J.: Detecting visually similar web pages: application to phishing detection. ACM Trans. Internet Technol. 10(2), 1–38 (2010)

    Article  Google Scholar 

  6. Chou, N., Ledesma, R., Teraguchi, Y., Boneh, D., Mitchell, J.C.: Client-side defense against web-based identity theft. In: Proceedings of the 11th Annual Network and Distributed System Security Symposium (NDSS) (2004)

    Google Scholar 

  7. C.Inc.: Couldmark toolbar, August 2015. http://www.cloudmark.com/desktop/ie-toolbar

  8. Corbetta, J., Invernizzi, L., Kruegel, C., Vigna, G.: Eyes of a human, eyes of a program: leveraging different views of the web for analysis and detection. In: Stavrou, A., Bos, H., Portokalidis, G. (eds.) RAID 2014. LNCS, vol. 8688, pp. 130–149. Springer, Cham (2014). doi:10.1007/978-3-319-11379-1_7

    Google Scholar 

  9. Dunlop, M., Groat, S., Shelly, D.: Goldphish: using images for content-based phishing analysis. In: 5th International Conference on Internet Monitoring and Protection (ICIMP), Barcelona, pp. 123–128. IEEE, May 2010

    Google Scholar 

  10. Fette, I., Sadeh, N., Tomasic, A.: Learning to detect phishing emails. In: Proceedings of the International World Wide Web Conference (WWW), May 2007

    Google Scholar 

  11. iTrustPage. http://www.cs.toronto.edu/ronda/itrustpage/

  12. Khonji, M., Iraqi, Y., Jones, A.: Lexical URL analysis for discriminating phishing and legitimate websites. In: 8th Annual Collaboration, Electronic Messaging, Anti-Abuse and Spam Conference, pp. 109–115. ACM, New York (2011)

    Google Scholar 

  13. Khonji, M., Iraqi, Y., Jones, A.: Enhancing phishing e-mail classifiers: a lexical URL analysis approach. Int. J. Inf. Secur. Res. (IJISR) 2(1/2), 40 (2012)

    Google Scholar 

  14. Lee, L.-H., Lee, K.-C., Juan, Y.-C., Chen, H.-H., Tseng, Y.-H.: Users’ behavioral prediction for phishing detection. In: Proceedings of the 23rd International Conference on World Wide Web, no. 1, pp. 337–338 (2014)

    Google Scholar 

  15. Ma, J., Saul, L. K., Savage, S., Voelker, G.M.: Beyond blacklists: learning to detect malicious web sites from suspicious URLs. In: 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1245–1254. ACM, New York (2009)

    Google Scholar 

  16. Ma, J., Saul, L.K., Savage, S., Voelker, G.M.: Identifying suspicious URLs: an application of large-scale online learning. In: 26th Annual International Conference on Machine Learning, pp. 681–688. ACM, New York (2009)

    Google Scholar 

  17. Mao, J., Li, P., Li, K., Wei, T., Liang, Z.: BaitAlarm: detecting phishing sites using similarity in fundamental visual features. In: Proceedings of the 5th International Conference on Intelligent Networking and Collaborative Systems (2013)

    Google Scholar 

  18. Medvet, E., Kirda, E., Kruegel, C.: Visual-similarity-based phishing detection. In: Proceedings of SecureComm 2008. ACM, September 2008

    Google Scholar 

  19. Moghimi, M., Varjani, A.Y.: New rule-based phishing detection method. Expert Syst. Appl. 53, 231–242 (2016)

    Article  Google Scholar 

  20. Mohammad, R., Thabtah, F., McCluskey, L.: An assessment of features related to phishing websites using an automated technique. In: International Conference for Internet Technology and Secured Transactions, London, pp. 492–497. IEEE, December 2012

    Google Scholar 

  21. Nourian, A., Ishtiaq, S., Maheswaran, M.: CASTLE: a social framework for collaborative anti-phishing databases. In: 2009 5th International Conference on Collaborative Computing: Networking, Applications and Worksharing, Washington, DC, pp. 1–10 (2009)

    Google Scholar 

  22. Likarish, P., Jung, E., Dunbar, D., Hansen, T.E., Hourcade, J.P.: B-apt: Bayesian anti-phishing toolbar. In: Proceedings of IEEE International Conference on Communications, ICC 2008. IEEE Press, May 2008

    Google Scholar 

  23. Pan, Y., Ding, X.: Anomaly based web phishing page detection. In: 22nd Annual Computer Security Applications Conference, Miami Beach, FL, pp. 381–392. IEEE, December 2006

    Google Scholar 

  24. Ronda, T., Saroiu, S., Wolman, A.: iTrustPage: a user-assisted anti-phishing tool. In: Proceedings of Eurosys 2008. ACM, April 2008

    Google Scholar 

  25. Wardman, B., Stallings, T., Warner, G., Skjellum, A.: High-performance content-based phishing attack detection. In: eCrime Researchers Summit, San Diego, CA, pp. 1–9. IEEE, November 2011

    Google Scholar 

  26. Wenyin, L., Xiaotie, D.: Detecting phishing web pages with visual similarity assessment based on earth mover’s distance. IEEE Trans. Dependable Secure Comput. 3(4), 301–311 (2006)

    Article  Google Scholar 

  27. Wu, L., Du, X., Wu, J.: MobiFish: a lightweight anti-phishing scheme for mobile phones. In: Proceedings - International Conference on Computer Communications and Networks, ICCCN (2014)

    Google Scholar 

  28. Xiang, G., Hong, J., Rose, C.P., Cranor, L.: CANTINA+: a feature-rich machine learning framework for detecting phishing web sites. ACM Trans. Inf. Syst. Secur. (TISSEC) 14(2), 21 (2011)

    Article  Google Scholar 

  29. Xiaotie, D., Guanglin, H., Fu, A.Y.: An antiphishing strategy based on visual similarity assessment. Internet Comput. 10(2), 58–65 (2006)

    Article  Google Scholar 

  30. Cao, Y., Han, W., Le, Y.: Anti-phishing based on automated individual white-list. In: Proceedings of the 4th ACM Workshop on Digital Identity Management, pp. 51–60 (2008)

    Google Scholar 

  31. Zhang, W., Lu, H., Xu, B., Yang, H.: Web phishing detection based on page spatial layout similarity. Informatica 37(3), 231–244 (2013)

    Google Scholar 

  32. Zhang, Y., Hong, J., Cranor, L.: Cantina: a content-based approach to detecting phishing web sites. In: Proceedings of the International World Wide Web Conference (WWW), May 2007

    Google Scholar 

Download references

Acknowledgment

This work was supported in part by the National Natural Science Foundation of China (No. 61402029), the National Natural Science Foundation of China (No. 61370190 and No. 61379002), Singapore Ministry of Education under NUS grant R-252-000-539-112.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Mao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Mao, J., Tian, W., Li, P., Wei, T., Liang, Z. (2017). Phishing Website Detection Based on Effective CSS Features of Web Pages. In: Ma, L., Khreishah, A., Zhang, Y., Yan, M. (eds) Wireless Algorithms, Systems, and Applications. WASA 2017. Lecture Notes in Computer Science(), vol 10251. Springer, Cham. https://doi.org/10.1007/978-3-319-60033-8_68

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60033-8_68

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60032-1

  • Online ISBN: 978-3-319-60033-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics