Nothing Special   »   [go: up one dir, main page]

Skip to main content

Joint Collaborative Representation with Deep Feature for Image-Set Face Recognition

  • Conference paper
  • First Online:
Biometric Recognition (CCBR 2017)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10568))

Included in the following conference series:

Abstract

With the progress and development of mobile camera and video surveillance, it becomes more efficiently to collect multiple face images for each query. Face recognition based on image set has attracted more and more attention in the community of computer vision and the application of biometrics. In this paper, instead of using handcraft features, we proposed to utilize the deep feature (e.g., convolutional neural network feature) in the application of image-set face recognition. In order to fully explore the discrimination of original query samples and the query virtual nearest point, we proposed a novel joint collaborative representation with a newly designed class-level similarity constraint on the coding coefficients. An alternative solving algorithm is proposed to solve the proposed model. Two experiments were conducted on the YouTube Face database and a new image-set database established based on Labeled Faced in the Wild (LFW). The result of experiments show that our approach has more advantages than previous image-set face recognition approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Huang, Z.H., Li, W.J., Shang, J., Wang, J., Zhang, T.: Non-uniform patch based face recognition via 2D-DWT. Image Vis. Comput. 37(5), 12–19 (2015)

    Article  Google Scholar 

  2. Liu, H.D., Yang, M., Gao, Y., Cui, C.Y.: Local histogram specification for face recognition under varying lighting condictions. Image Vis. Comput. 32(5), 335–347 (2014)

    Article  Google Scholar 

  3. Moeini, A., Moeini, H., Faez, K.: Unrestricted pose-invariant face recognition by sparse dictionary matrix. Image Vis. Comput. 36(4), 9–22 (2015)

    Article  Google Scholar 

  4. Yang, M., Liu, W., Shen, L.: Joint regularized nearest points for image set based face recognition. In: IEEE International Conference and Workshops on Automatic Face and Gesture Recognition, pp. 1–7. IEEE (2015)

    Google Scholar 

  5. Hu, Y.Q., Mian, A.S., Owens, R.: Face recognition using sparse approximated nearest points between image sets. IEEE Trans. Pattern Anal. Mach. Intell. 34(10), 1992–2004 (2012)

    Article  Google Scholar 

  6. Yang, M., Zhu, P.F., Van Gool, L., Zhang, L.: Face recognition based on regularized nearest points between image sets. In: Proceedings of FG (2013)

    Google Scholar 

  7. Wu, Y., Minoh, M., Mukunoki, M.: Collaboratively regularized nearest points, In: Proceedings of BMVC, (2013)

    Google Scholar 

  8. Herrmann, C., Willersinn, D., Beyerer, J.: Low-Resolution Convolutional Neural Networks for Video Face Recognition. In: AVSS (2016)

    Google Scholar 

  9. Lee, K.C., Ho, J., Yang, M.H., Kriegman, D.: Video-base face recognition using probabilistic appearance manifolds. In: Proceedings of CVPR (2003)

    Google Scholar 

  10. Arandjelovic, O., Shakhnarovich, G., Fisher, J., Cipolla, R., Darrel, T.: Face recognition with image sets using manifold density divergence. In: Proceedings of CVPR (2005)

    Google Scholar 

  11. Shakhnarovich, G., Fisher, J.W., Darrell, T.: Face recognition from long-term observations. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2352, pp. 851–865. Springer, Heidelberg (2002). doi:10.1007/3-540-47977-5_56

    Chapter  Google Scholar 

  12. Yamaguchi, O., Fukui, K., Maeda, K.-i.: Face recognition using temporal image sequence. In: Proceedings of FG (1998)

    Google Scholar 

  13. Wen, Y., Zhang, K., Li, Z., Qiao, Y.: A discriminative feature learning approach for deep face recognition. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9911, pp. 499–515. Springer, Cham (2016). doi:10.1007/978-3-319-46478-7_31

    Google Scholar 

  14. Kim, T.K., Arandjelovic, O., Cipolla, R.: Discriminative learning and recognition of image set classes using canonical correlations. IEEE Trans. Pattern Anal. Mach. Intell. 29(6), 1005–1018 (2007)

    Article  Google Scholar 

  15. Wright, J., Yang, A.Y., Ganesh, A., Sastry, S.S., Ma, Y.: Robust face recognition via sparse representation. IEEE Trans. Pattern Anal. Mach. Intell. 31(2), 21–227 (2009)

    Article  Google Scholar 

  16. Shah, S.A.A., Bennamoun, M., Boussaid, F.: Iterative deep learning for image set based face and object recognition. Neurocomputing 174, 866–874 (2016)

    Article  Google Scholar 

  17. Zhang, L., Yang, M., Feng, X.C.: Sparse representation or collaborative representation: which helps face recognition? In: Proceedings of ICCV (2011)

    Google Scholar 

  18. Cevikalp, H., Triggs, B.: Face recognition based on image sets. In: Proceedings of CVPR (2010)

    Google Scholar 

  19. Fumin, S., Chunhua, S., Zhou, X., Yang, Y., Shen, H.T.: Face image classification by pooling raw features. Pattern Recogn. 54(6), 94–103 (2016)

    Google Scholar 

  20. Shen, F., Shen, C., van den Hengel, A., Tang, Z.: Approximate least trimmed sum of squares fitting and applications in image analysis. IEEE Trans. Image Process. 22(5), 1836–1847 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Shen, F., Yang, Y., Zhou, X., Liu, X., Shao, J.: Face identification with second-order pooling in single-layer networks. Neurocomputing 187, 11–18 (2016)

    Article  Google Scholar 

  22. Hayat, M., Bennamoun, M., An, S.: Deep reconstruction models for image set classification. IEEE Trans. Pattern Anal. Mach. Intell. 37(4), 713–727 (2015)

    Article  Google Scholar 

Download references

Acknowledgment

This work is partially supported by the National Natural Science Foundation for Young Scientists of China (no. 61402289), and National Science Foundation of Guang-dong Province (no. 2014A030313558).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meng Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Li, H., Yang, M. (2017). Joint Collaborative Representation with Deep Feature for Image-Set Face Recognition. In: Zhou, J., et al. Biometric Recognition. CCBR 2017. Lecture Notes in Computer Science(), vol 10568. Springer, Cham. https://doi.org/10.1007/978-3-319-69923-3_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-69923-3_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-69922-6

  • Online ISBN: 978-3-319-69923-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics