Nothing Special   »   [go: up one dir, main page]

Skip to main content

Performance Evaluation of an IoT-Based E-Learning Testbed Using Mean-Shift Clustering Approach Considering Gamma Type of Brain Waves

  • Conference paper
  • First Online:
Advances on Broad-Band Wireless Computing, Communication and Applications (BWCCA 2017)

Abstract

Due to the opportunities provided by the Internet, people are taking advantage of e-learning courses and enormous research efforts have been dedicated to the development of e-learning systems. So far, many e-learning systems are proposed and used practically. However, in these systems the e-learning completion rate is low. One of the reasons is the low study desire and motivation. In this work, we present an IoT-Based E-Learning testbed using Raspberry Pi mounted on Raspbian. We carried out some experiments with a student of our laboratory for gamma type of brain waves. We used MindWave Mobile (MWM) to get the data and considered four situations: sleeping, relaxing, active and moving. Then, we used mean-shift clustering algorithm to cluster the data. The evaluation results show that our testbed can judge the human situation by using gamma waves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Matsuo, K., Barolli, L., Xhafa, F., Kolici, V., Koyama, A., Durresi, A., Miho, R.: Implementation of an E-learning system using P2P, web and sensor technologies. In: Proceedings of IEEE Advanced Information Networking and Applications (AINA-2009), pp. 800–807 (2009)

    Google Scholar 

  2. Matsuo, K., Barolli, L., Arnedo-Moreno, J., Xhafa, F., Koyama, A., Durresi, A.: Experimental results and evaluation of SmartBox stimulation device in a P2P E-learning system. In: Proceedings of Network-Based Information Systems (NBiS-2009), pp. 37–44 (2009)

    Google Scholar 

  3. Domingo, M.G., Forner, J.A.M.: Expanding the learning environment: combining physicality and virtuality - the internet of things for eLearning. In: Proceedings of 10-th IEEE International Conference on Advanced Learning Technologies (ICALT-2010), pp. 730–731 (2010)

    Google Scholar 

  4. Gasparini, I., Eyharabide, V., Schiaffino, S., Pimenta, M.S., Amandi, A., de Oliveira, J.P.M.: Improving user profiling for a richer personalization: modeling context in e-learning. In: Intelligent and Adaptive Learning Systems: Technology Enhanced Support for Learners and Teachers, Chapter 12, pp. 182–197 (2012)

    Google Scholar 

  5. de Freitas, V., Marcal, V.P., Gasparini, I., Amaral, M.A., Proenca Jr., M.L., Brunetto, M.A.C., Pimenta, M.S., Ribeiro, C.H.F.P., de Lima, J.V., de Oliveira, J.P.M.: AdaptWeb: an adaptive web-based courseware. In: Proceedings of International Conference on Information and Communication Technologies in Education (ICTE-2002), pp. 131–134 (2002)

    Google Scholar 

  6. Schiaffino, S., Garcia, P., Amandi, A.: eTeacher: providing personalized assistance to e-learning students. Comput. Educ. 51(4), 1744–1754 (2008)

    Article  Google Scholar 

  7. Zanella, A., Bui, N., Castellani, A., Vangelista, L.: Internet of Things for smart cities. IEEE Internet Things J. 1(1), 22–32 (2014)

    Article  Google Scholar 

  8. Atzori, L., Iera, A., Morabito, G.: The Internet of Things: a survey. Comput. Netw. 54(15), 2787–2805 (2010)

    Article  MATH  Google Scholar 

  9. Bellavista, P., Cardone, G., Corradi, A., Foschini, L.: Convergence of MANET and WSN in IoT Urban scenarios. IEEE Sens. J. 13(10), 3558–3567 (2013)

    Article  Google Scholar 

  10. Derpanis, K.G.: Mean Shift Clustering. http://www.cse.yorku.ca/~kosta/CompVis-Notes/mean-shift.pdf. Accessed 14 Sept 2016

  11. Comaniciu, D.: Variable bandwidth density-based fusion. In: Proceedings of IEEE Computer Vision and Pattern Recognition (CVPR-2003), vol. 1, pp. 59–66 (2003)

    Google Scholar 

  12. Tuzel, O., Porikli, F., Meer, P.: Kernel methods for weakly supervised mean shift clustering. In: Proceedings of 12-th IEEE International Conference on Computer Vision, pp. 48–55 (2009)

    Google Scholar 

  13. Comaniciu, D., Meer, P.: Mean shift: a robust approach toward feature space analysis. IEEE Trans. Pattern Anal. Mach. Intell. 24(5), 603–619 (2002)

    Article  Google Scholar 

  14. Raspberry Pi Foundation. http://www.raspberrypi.org/

  15. Oda, T., Barolli, A., Sakamoto, S., Barolli, L., Ikeda, M., Uchida, K.: Implementation and experimental results of a WMN testbed in indoor environment considering LoS scenario. In: Proceedings of 29-th IEEE International Conference on Advanced Information Networking and Applications (AINA-2015), pp. 37–42 (2015)

    Google Scholar 

  16. NeuroSky to Release MindWave Mobile. http://mindwavemobile.neurosky.com

  17. Knyazev, G., et al.: EEG delta oscillations as a correlate of basic homeostatic and motivational processes. Neurosci. Biobehav. Rev. 36(1), 677–695 (2012). https://doi.org/10.1016/j.neubiorev.2011.10.002. Elsevier

    Article  Google Scholar 

  18. Klimesch, W., et al.: EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Res. Rev. 29(2–3), 169–195 (1999). Elsevier

    Article  Google Scholar 

  19. Teplan, M., et al.: Fundamentals of EGG measurement. Meas. Sci. Rev. 2(2), 1–11 (2002)

    Google Scholar 

  20. Vialatte, F.B., Bakardjian, H., Prasad, R., Cichocki, A.: EEG paroxysmal gamma waves during Bhramari Pranayama: a yoga breathing technique. Conscious. Cogn. 18(4), 977–988 (2009). https://doi.org/10.1016/j.concog.2008.01.004. Elesevier

    Article  Google Scholar 

  21. Akin, M.: Comparison of wavelet transform and FFT methods in the analysis of EEG signals. J. Med. Syst. 26(3), 241–247 (2002)

    Article  Google Scholar 

  22. Pedregosa, F., et al.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12(10), 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masafumi Yamada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yamada, M., Cuka, M., liu, Y., Bylykbashi, K., Matsuo, K., Barolli, L. (2018). Performance Evaluation of an IoT-Based E-Learning Testbed Using Mean-Shift Clustering Approach Considering Gamma Type of Brain Waves. In: Barolli, L., Xhafa, F., Conesa, J. (eds) Advances on Broad-Band Wireless Computing, Communication and Applications. BWCCA 2017. Lecture Notes on Data Engineering and Communications Technologies, vol 12. Springer, Cham. https://doi.org/10.1007/978-3-319-69811-3_60

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-69811-3_60

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-69810-6

  • Online ISBN: 978-3-319-69811-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics