Abstract
Due to the opportunities provided by the Internet, people are taking advantage of e-learning courses and enormous research efforts have been dedicated to the development of e-learning systems. So far, many e-learning systems are proposed and used practically. However, in these systems the e-learning completion rate is low. One of the reasons is the low study desire and motivation. In this work, we present an IoT-Based E-Learning testbed using Raspberry Pi mounted on Raspbian. We carried out some experiments with a student of our laboratory for gamma type of brain waves. We used MindWave Mobile (MWM) to get the data and considered four situations: sleeping, relaxing, active and moving. Then, we used mean-shift clustering algorithm to cluster the data. The evaluation results show that our testbed can judge the human situation by using gamma waves.
Similar content being viewed by others
References
Matsuo, K., Barolli, L., Xhafa, F., Kolici, V., Koyama, A., Durresi, A., Miho, R.: Implementation of an E-learning system using P2P, web and sensor technologies. In: Proceedings of IEEE Advanced Information Networking and Applications (AINA-2009), pp. 800–807 (2009)
Matsuo, K., Barolli, L., Arnedo-Moreno, J., Xhafa, F., Koyama, A., Durresi, A.: Experimental results and evaluation of SmartBox stimulation device in a P2P E-learning system. In: Proceedings of Network-Based Information Systems (NBiS-2009), pp. 37–44 (2009)
Domingo, M.G., Forner, J.A.M.: Expanding the learning environment: combining physicality and virtuality - the internet of things for eLearning. In: Proceedings of 10-th IEEE International Conference on Advanced Learning Technologies (ICALT-2010), pp. 730–731 (2010)
Gasparini, I., Eyharabide, V., Schiaffino, S., Pimenta, M.S., Amandi, A., de Oliveira, J.P.M.: Improving user profiling for a richer personalization: modeling context in e-learning. In: Intelligent and Adaptive Learning Systems: Technology Enhanced Support for Learners and Teachers, Chapter 12, pp. 182–197 (2012)
de Freitas, V., Marcal, V.P., Gasparini, I., Amaral, M.A., Proenca Jr., M.L., Brunetto, M.A.C., Pimenta, M.S., Ribeiro, C.H.F.P., de Lima, J.V., de Oliveira, J.P.M.: AdaptWeb: an adaptive web-based courseware. In: Proceedings of International Conference on Information and Communication Technologies in Education (ICTE-2002), pp. 131–134 (2002)
Schiaffino, S., Garcia, P., Amandi, A.: eTeacher: providing personalized assistance to e-learning students. Comput. Educ. 51(4), 1744–1754 (2008)
Zanella, A., Bui, N., Castellani, A., Vangelista, L.: Internet of Things for smart cities. IEEE Internet Things J. 1(1), 22–32 (2014)
Atzori, L., Iera, A., Morabito, G.: The Internet of Things: a survey. Comput. Netw. 54(15), 2787–2805 (2010)
Bellavista, P., Cardone, G., Corradi, A., Foschini, L.: Convergence of MANET and WSN in IoT Urban scenarios. IEEE Sens. J. 13(10), 3558–3567 (2013)
Derpanis, K.G.: Mean Shift Clustering. http://www.cse.yorku.ca/~kosta/CompVis-Notes/mean-shift.pdf. Accessed 14 Sept 2016
Comaniciu, D.: Variable bandwidth density-based fusion. In: Proceedings of IEEE Computer Vision and Pattern Recognition (CVPR-2003), vol. 1, pp. 59–66 (2003)
Tuzel, O., Porikli, F., Meer, P.: Kernel methods for weakly supervised mean shift clustering. In: Proceedings of 12-th IEEE International Conference on Computer Vision, pp. 48–55 (2009)
Comaniciu, D., Meer, P.: Mean shift: a robust approach toward feature space analysis. IEEE Trans. Pattern Anal. Mach. Intell. 24(5), 603–619 (2002)
Raspberry Pi Foundation. http://www.raspberrypi.org/
Oda, T., Barolli, A., Sakamoto, S., Barolli, L., Ikeda, M., Uchida, K.: Implementation and experimental results of a WMN testbed in indoor environment considering LoS scenario. In: Proceedings of 29-th IEEE International Conference on Advanced Information Networking and Applications (AINA-2015), pp. 37–42 (2015)
NeuroSky to Release MindWave Mobile. http://mindwavemobile.neurosky.com
Knyazev, G., et al.: EEG delta oscillations as a correlate of basic homeostatic and motivational processes. Neurosci. Biobehav. Rev. 36(1), 677–695 (2012). https://doi.org/10.1016/j.neubiorev.2011.10.002. Elsevier
Klimesch, W., et al.: EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Res. Rev. 29(2–3), 169–195 (1999). Elsevier
Teplan, M., et al.: Fundamentals of EGG measurement. Meas. Sci. Rev. 2(2), 1–11 (2002)
Vialatte, F.B., Bakardjian, H., Prasad, R., Cichocki, A.: EEG paroxysmal gamma waves during Bhramari Pranayama: a yoga breathing technique. Conscious. Cogn. 18(4), 977–988 (2009). https://doi.org/10.1016/j.concog.2008.01.004. Elesevier
Akin, M.: Comparison of wavelet transform and FFT methods in the analysis of EEG signals. J. Med. Syst. 26(3), 241–247 (2002)
Pedregosa, F., et al.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12(10), 2825–2830 (2011)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG
About this paper
Cite this paper
Yamada, M., Cuka, M., liu, Y., Bylykbashi, K., Matsuo, K., Barolli, L. (2018). Performance Evaluation of an IoT-Based E-Learning Testbed Using Mean-Shift Clustering Approach Considering Gamma Type of Brain Waves. In: Barolli, L., Xhafa, F., Conesa, J. (eds) Advances on Broad-Band Wireless Computing, Communication and Applications. BWCCA 2017. Lecture Notes on Data Engineering and Communications Technologies, vol 12. Springer, Cham. https://doi.org/10.1007/978-3-319-69811-3_60
Download citation
DOI: https://doi.org/10.1007/978-3-319-69811-3_60
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-69810-6
Online ISBN: 978-3-319-69811-3
eBook Packages: EngineeringEngineering (R0)