Nothing Special   »   [go: up one dir, main page]

Skip to main content

Group Formation Based on Crowdsourced Top-k Recommendation

  • Conference paper
  • First Online:
Web and Big Data (APWeb-WAIM 2017)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10612))

  • 1126 Accesses

Abstract

There has been significant recent interest in the area of group recommendations, where, given groups of users of a recommender system, one wants to recommend \(top-k\) items to a group to achieve an object such as minimizing the maximum disagreement between group members, according to a chosen semantics of group satisfaction. We consider the complementary problem of how to form groups such that the users in the formed groups are as even satisfied with the suggested \(top-k\) recommendations as possible. Thanks to emerging crowdsourcing platforms, e.g., Amazon Mechanical Turk and CrowdFlower, we have easy access to workers’ \(top-N\) recommendation. Here dealing with the ranking data is a big challenge, as quite few methods to solve this issue. We assume that the recommendations will be generated according to minimize the maximum disagreement between group users utilizing the kendall distance. Rather than assuming groups are given, or rely on ad hoc group formation dynamics, our framework allows a strategic approach for forming groups of users in order to minimize the maximum disagreement. Furthermore, we develop efficient algorithms for group formation under the minmax object. We validate our results and demonstrate the scalability and effectiveness of our group formation algorithms on both real and synthetic data sets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Tong, Y., She, J., Ding, B., Wang, L., Chen, L.: Online mobile micro-task allocation in spatial crowdsourcing. In: ICDE, pp. 49–60 (2016)

    Google Scholar 

  2. Song, T., Tong, Y., Wang, L., She, J., Yao, B., Chen, L., Xu, K.: Trichromatic online matching in real-time spatial crowdsourcing. In: ICDE, pp. 1009–1020 (2017)

    Google Scholar 

  3. Crossen, A., Budzik, J., Hammond, K.J.: Flytrap: intelligent group music recommendation. In: IUI, pp. 184–185. ACM (2002)

    Google Scholar 

  4. Jameson, A., Smyth, B.: Recommendation to groups. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) The Adaptive Web. LNCS, vol. 4321, pp. 596–627. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72079-9_20

    Chapter  Google Scholar 

  5. O’Connor, M., Cosley, D., Konstan, J.A., Riedl, J.: PolyLens: a recommender system for groups of users. In: Prinz, W., Jarke, M., Rogers, Y., Schmidt, K., Wulf, V. (eds.) ECSCW 2001. Springer, Heidelberg (2001). https://doi.org/10.1007/0-306-48019-0_11

    Google Scholar 

  6. Amer-Yahia, S., Roy, S.B., Chawlat, A., Das, G., Yu, C.: Group recommendation: semantics and efficiency. PVLDB 2(1), 754–765 (2009)

    Google Scholar 

  7. Senot, C., Kostadinov, D., Bouzid, M., Picault, J., Aghasaryan, A., Bernier, C.: Analysis of strategies for building group profiles. In: De Bra, P., Kobsa, A., Chin, D. (eds.) UMAP 2010. LNCS, vol. 6075, pp. 40–51. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13470-8_6

    Chapter  Google Scholar 

  8. Berkovsky, S., Freyne, J.: Group-based recipe recommendations: analysis of data aggregation strategies. In: RecSys., pp. 111–118 (2010)

    Google Scholar 

  9. Pizzutilo, S., De Carolis, B., Cozzolongo, G., Ambruoso, F.: Group modeling in a public space: methods, techniques, experiences. In: AIC., pp. 175–180 (2005)

    Google Scholar 

  10. Ntoutsi, E., Stefanidis, K., Nørvåg, K., Kriegel, H.-P.: Fast group recommendations by applying user clustering. In: Atzeni, P., Cheung, D., Ram, S. (eds.) ER 2012. LNCS, vol. 7532, pp. 126–140. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34002-4_10

    Chapter  Google Scholar 

  11. She, J., Tong, Y., Chen, L.: Utility-aware social event-participant planning. In: SIGMOD, pp. 1629–1643 (2015)

    Google Scholar 

  12. Tong, Y., She, J., Meng, R.: Bottleneck-aware arrangement over event-based social networks: the max-min approach. World Wide Web 19(6), 1151–1177 (2016)

    Article  Google Scholar 

  13. She, J., Tong, Y., Chen, L., Cao, C.C.: Conflict-aware event-participant arrangement and its variant for online setting. IEEE Trans. Knowl. Data Eng. 28(9), 2281–2295 (2016)

    Article  Google Scholar 

  14. Chen, J., Chen, X., Song, X.: Bidder’s strategy under group-buying auction on the internet. IEEE SMC 32(6), 680–690 (2002)

    Google Scholar 

  15. Mallows, C.L.: Non-null ranking models. I. Biometrika 44(2), 114–130 (1957)

    Article  MATH  MathSciNet  Google Scholar 

  16. Plackett, R.L.: The analysis of permutations. Roy. Stat. Soc. 24(2), 193–202 (1975)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Cai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gao, Y., Cai, W., Liang, K. (2017). Group Formation Based on Crowdsourced Top-k Recommendation. In: Song, S., Renz, M., Moon, YS. (eds) Web and Big Data. APWeb-WAIM 2017. Lecture Notes in Computer Science(), vol 10612. Springer, Cham. https://doi.org/10.1007/978-3-319-69781-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-69781-9_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-69780-2

  • Online ISBN: 978-3-319-69781-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics