Nothing Special   »   [go: up one dir, main page]

Skip to main content

Smooth Representation Clustering Based on Kernelized Random Walks

  • Conference paper
  • First Online:
Web and Big Data (APWeb-WAIM 2017)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10612))

  • 1139 Accesses

Abstract

With the widespread use of smart phones and tablet computers, it is necessary to develop algorithms to assist high throughout analysis of mobile videos. A novel method for automated segmentation on the mobile video scenery is proposed in this paper. It uses the kernelized random walks on the globe KNN graph and the Smooth Representation Clustering to improve the segmentation effectiveness. The high order transition probability matrix of the kernelized random walks is utilized for erasing the unreliable edge of the graph. Simultaneously kernel approach is used to assign different weights for neighbors to evaluate their contribution to the clustering. The method is evaluated on two public datasets and a real-world mobile video taken by a smart phone. The experimental results show that the proposed algorithm achieves better performance compared with the other representative algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wang, J., Xu, M., Lu, H.: ActiveAd: a novel framework of linking ad videos to online products. Neurocomputing 185, 82–92 (2016)

    Article  Google Scholar 

  2. Vidal, R.: A tutorial on subspace clustering. IEEE Signal. Proc. Mag. 28(2), 52–68 (2011)

    Article  Google Scholar 

  3. Elhamifar, E., Vidal, R.: Sparse subspace clustering: algorithm, theory, and applications. IEEE Trans. Pattern Anal. Mach. Intell. 35(11), 2765–2781 (2013)

    Article  Google Scholar 

  4. Elhamifar, E., Vidal, R.: Sparse subspace clustering. In: IEEE Conference of Computer Vision and Pattern Recognition (CVPR 2009), Florida, pp. 2790–2797 (2009)

    Google Scholar 

  5. Elhamifar, E., Sapiro, G., Sastry, S.: Dissimilarity-based sparse subset selection. IEEE Trans. Pattern Anal. Mach. Intell. PP(99), 1 (2015). doi:10.1109/tpami.2015.2511748(2015)

    Google Scholar 

  6. Jun, X., Kui, X.: Reweighted sparse subspace clustering. Comput. Vis. Image Underst. 138, 25–37 (2015)

    Article  Google Scholar 

  7. Liu, G., Lin, Z., Yan, S., Sun, J., Yu, Y., Ma, Y.: Robust recovery of subspace structures by low-rank representation. IEEE Trans. Pattern Anal. Mach. Intell. 35(1), 171–184 (2012). doi:10.1109/tpami.2012.88

    Article  Google Scholar 

  8. Lu, C.-Y., Min, H., Zhao, Z.-Q., Zhu, L., Huang, D.-S., Yan, S.: Robust and efficient subspace segmentation via least squares regression. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7578, pp. 347–360. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33786-4_26

    Chapter  Google Scholar 

  9. Chen, L.F., Guo, G.D., Jiang, Q.S.: Adaptive algorithm for soft subspace clustering. J. Softw. 21(10), 2513–2523 (2010)

    MATH  Google Scholar 

  10. Lu, C.Y., Lin., Z., Yan, S.: Correlation adaptive subspace segmentation by trace lasso. In: IEEE International Conference on Computer Vision (ICCV), Sydney, VIC, pp. 1345–1352 (2013)

    Google Scholar 

  11. Hu, H., Lin, Z.C., Feng, J.J., Zhou, J.: Smooth representation clustering. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Columbus, OH, pp. 23–28 (2014)

    Google Scholar 

  12. Cao, J.Z., Chen, P., Dai, Q.Y., Ling, W.K.: Similarity graph construction method based on Markov random walker for spectral clustering. J. Nanjing Univ. (Nat. Sci. Chin. Version) 51(4), 772–779 (2015)

    MATH  Google Scholar 

  13. Kakutani, S.: Markov processes and the Dirichlet problem. Proc. Jpn. Acad. 21, 227–233 (1945)

    Article  MATH  Google Scholar 

  14. İnkaya, T.: A parameter-free similarity graph for spectral clustering. Expert Syst. Appl. 42(24), 9489–9498 (2015)

    Article  Google Scholar 

  15. Grady, L.: Random walks for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 28(11), 1768–1783 (2006)

    Article  Google Scholar 

  16. Grady, L.: Multilabel random walker image segmentation using prior models. In: IEEE Conference of Computer Vision and Pattern Recognition (CVPR 2005), San Diego, vol. 1, pp. 763–770 (2005)

    Google Scholar 

  17. Grady, L., Sinop, A.K.: Fast approximate random walker segmentation using eigenvector precomputation. In: IEEE Conference of Computer Vision and Pattern Recognition (CVPR 2008), Anchorage, Alaska, pp. 24–26 (2008)

    Google Scholar 

  18. Sonu, K.J., Purnendu, B., Subhadeep, B.: Random walks based image segmentation using color space graphs. Proc. Technol. 10(2013), 271–278 (2013)

    Google Scholar 

  19. Yang, X.L., Su, Y., Duan, R.B., Fan, H.J., Yeo, S.Y., Lim, C., Zhang, L., Tan, R.S.: Cardiac image segmentation by random walks with dynamic shape constraint. IET Comput. Vis. 10(1), 79–86 (2016)

    Article  Google Scholar 

  20. Mitr, S.K., Sicuranza, G.L.: Nonlinear image processing, pp. 274–278. Academic Press, Cambridge (2001)

    Google Scholar 

  21. Schölkopf, B., Smola, A., Müller, K.R.: Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput. 10(5), 1299–1319 (1998)

    Article  Google Scholar 

  22. Ramponi, G., Strobel, N.K., Mitra, S.K., Yu, T.H.: Nonlinear unsharp masking methods for image contrast enhancement. J. Electron. Imaging 5(3), 353–366 (1996)

    Article  Google Scholar 

  23. Li, H., Adali, T.: Complex-valued adaptive signal processing using nonlinear functions. EURASIP J. Adv. Sign. Process. 2008, 122 (2008)

    MATH  Google Scholar 

  24. Tron., R., Vidal, R.: A benchmark for the comparison of 3-d motion segmentation algorithm. In: IEEE Conference of Computer Vision and Pattern Recognition (CVPR 2007), Minneapolis, Minnesota, pp. 1–8 (2007)

    Google Scholar 

  25. Kanatani, K., Sugaya., Y.: Multi-state optimization for multi-body motion segmentation. In: Proceedings of Australia-Japan Advanced Workshop on Computer Vision, Adelaide Australia, pp. 25–31 (2003)

    Google Scholar 

  26. Hull, J.J.: A database for handwritten text recognition research. IEEE Trans. Pattern Anal. Mach. Intell. 16(5), 550–554 (1994)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Chinese National Natural Science Foundation under Grant Nos. 61672157, 41601477, it is also supported by the Leading project in Science and Technology Department of Fujian Province under Grant No. 2015Y0054.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liping Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, L., Guo, G., Chen, L. (2017). Smooth Representation Clustering Based on Kernelized Random Walks. In: Song, S., Renz, M., Moon, YS. (eds) Web and Big Data. APWeb-WAIM 2017. Lecture Notes in Computer Science(), vol 10612. Springer, Cham. https://doi.org/10.1007/978-3-319-69781-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-69781-9_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-69780-2

  • Online ISBN: 978-3-319-69781-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics