Abstract
Multi-target regression (MTR) is the task of learning predictive models for problems with multiple continuous target variables. In this work, we introduce the task of hierarchical multi-target regression (HMTR), where these target variables are organized in a hierarchy. The hierarchy contains the target variables and has an aggregation function that defines the parent child relationships in the hierarchy. This information can be used by learning methods to obtain better predictive models. We then propose to extend the approach of predictive clustering trees for MTR towards addressing the task of HMTR. The information from the hierarchy is exploited by defining the variance function through a weighted Euclidean distance. We evaluate the proposed method on 4 practically relevant HMTR datasets. The results show that HMTR performs better than standard MTR. Finally, we illustrate the enhanced interpretability potential of PCTs for HMTR.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Kocev, D., Vens, C., Struyf, J., Džeroski, S.: Tree ensembles for predicting structured outputs. Pattern Recogn. 46(3), 817–833 (2013)
Bakır, G.H., Hofmann, T., Schölkopf, B., Smola, A.J., Taskar, B., Vishwanathan, S.V.N.: Predicting Structured Data. Neural Information Processing. The MIT Press, Cambridge (2007)
Kocev, D., Džeroski, S., White, M.D., Newell, G.R., Griffioen, P.: Using single-and multi-target regression trees and ensembles to model a compound index of vegetation condition. Ecol. Model. 220(8), 1159–1168 (2009)
Borchani, H., Varando, G., Bielza, C., Larrañaga, P.: A survey on multi-output regression. Wiley Interdisc. Rev. Data Min. Knowl. Discov. 5(5), 216–233 (2015)
Osborne, J.W.: The advantages of hierarchical linear modeling (2000)
Struyf, J., Džeroski, S.: Constraint based induction of multi-objective regression trees. In: Bonchi, F., Boulicaut, J.-F. (eds.) KDID 2005. LNCS, vol. 3933, pp. 222–233. Springer, Heidelberg (2006). doi:10.1007/11733492_13
Tsoumakas, G., Spyromitros-Xioufis, E., Vrekou, A., Vlahavas, I.: Multi-target regression via random linear target combinations. In: Calders, T., Esposito, F., Hüllermeier, E., Meo, R. (eds.) ECML PKDD 2014. LNCS, vol. 8726, pp. 225–240. Springer, Heidelberg (2014). doi:10.1007/978-3-662-44845-8_15
Spyromitros-Xioufis, E., Tsoumakas, G., Groves, W., Vlahavas, I.: Multi-target regression via input space expansion: treating targets as inputs. Mach. Learn. 104(1), 55–98 (2016)
Vens, C., Struyf, J., Schietgat, L., Džeroski, S., Blockeel, H.: Decision trees for hierarchical multi-label classification. Mach. Learn. 73(2), 185–214 (2008)
Džeroski, S.: Towards a general framework for data mining. In: Džeroski, S., Struyf, J. (eds.) KDID 2006. LNCS, vol. 4747, pp. 259–300. Springer, Heidelberg (2007). doi:10.1007/978-3-540-75549-4_16
Blockeel, H., Struyf, J.: Efficient algorithms for decision tree cross-validation. J. Mach. Learn. Res. 3, 621–650 (2002)
Breiman, L., Friedman, J., Olshen, R., Stone, C.J.: Classification and Regression Trees. Chapman & Hall/CRC, Boca Raton (1984)
Madjarov, G., Kocev, D., Gjorgjevikj, D., Džeroski, S.: An extensive experimental comparison of methods for multi-label learning. Pattern Recogn. 45(9), 3084–3104 (2012)
Slavkov, I., Gjorgjioski, V., Struyf, J., Džeroski, S.: Finding explained groups of time-course gene expression profiles with predictive clustering trees. Mol. BioSyst. 6(4), 729–740 (2010)
Gamberger, D., Ženko, B., Mitelpunkt, A., Shachar, N., Lavrač, N.: Clusters of male and female alzheimers disease patients in the alzheimers disease neuroimaging initiative (adni) database. Brain Inf. 3(3), 169–179 (2016)
Acknowledgments
We acknowledge the financial support of the European Commission through the grants ICT-2013-612944 MAESTRA and ICT-2013-604102 HBP.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Mileski, V., Džeroski, S., Kocev, D. (2017). Predictive Clustering Trees for Hierarchical Multi-Target Regression. In: Adams, N., Tucker, A., Weston, D. (eds) Advances in Intelligent Data Analysis XVI. IDA 2017. Lecture Notes in Computer Science(), vol 10584. Springer, Cham. https://doi.org/10.1007/978-3-319-68765-0_19
Download citation
DOI: https://doi.org/10.1007/978-3-319-68765-0_19
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-68764-3
Online ISBN: 978-3-319-68765-0
eBook Packages: Computer ScienceComputer Science (R0)