Nothing Special   »   [go: up one dir, main page]

Skip to main content

Predictive Clustering Trees for Hierarchical Multi-Target Regression

  • Conference paper
  • First Online:
Advances in Intelligent Data Analysis XVI (IDA 2017)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10584))

Included in the following conference series:

Abstract

Multi-target regression (MTR) is the task of learning predictive models for problems with multiple continuous target variables. In this work, we introduce the task of hierarchical multi-target regression (HMTR), where these target variables are organized in a hierarchy. The hierarchy contains the target variables and has an aggregation function that defines the parent child relationships in the hierarchy. This information can be used by learning methods to obtain better predictive models. We then propose to extend the approach of predictive clustering trees for MTR towards addressing the task of HMTR. The information from the hierarchy is exploited by defining the variance function through a weighted Euclidean distance. We evaluate the proposed method on 4 practically relevant HMTR datasets. The results show that HMTR performs better than standard MTR. Finally, we illustrate the enhanced interpretability potential of PCTs for HMTR.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kocev, D., Vens, C., Struyf, J., Džeroski, S.: Tree ensembles for predicting structured outputs. Pattern Recogn. 46(3), 817–833 (2013)

    Article  Google Scholar 

  2. Bakır, G.H., Hofmann, T., Schölkopf, B., Smola, A.J., Taskar, B., Vishwanathan, S.V.N.: Predicting Structured Data. Neural Information Processing. The MIT Press, Cambridge (2007)

    Google Scholar 

  3. Kocev, D., Džeroski, S., White, M.D., Newell, G.R., Griffioen, P.: Using single-and multi-target regression trees and ensembles to model a compound index of vegetation condition. Ecol. Model. 220(8), 1159–1168 (2009)

    Article  Google Scholar 

  4. Borchani, H., Varando, G., Bielza, C., Larrañaga, P.: A survey on multi-output regression. Wiley Interdisc. Rev. Data Min. Knowl. Discov. 5(5), 216–233 (2015)

    Article  Google Scholar 

  5. Osborne, J.W.: The advantages of hierarchical linear modeling (2000)

    Google Scholar 

  6. Struyf, J., Džeroski, S.: Constraint based induction of multi-objective regression trees. In: Bonchi, F., Boulicaut, J.-F. (eds.) KDID 2005. LNCS, vol. 3933, pp. 222–233. Springer, Heidelberg (2006). doi:10.1007/11733492_13

    Chapter  Google Scholar 

  7. Tsoumakas, G., Spyromitros-Xioufis, E., Vrekou, A., Vlahavas, I.: Multi-target regression via random linear target combinations. In: Calders, T., Esposito, F., Hüllermeier, E., Meo, R. (eds.) ECML PKDD 2014. LNCS, vol. 8726, pp. 225–240. Springer, Heidelberg (2014). doi:10.1007/978-3-662-44845-8_15

    Google Scholar 

  8. Spyromitros-Xioufis, E., Tsoumakas, G., Groves, W., Vlahavas, I.: Multi-target regression via input space expansion: treating targets as inputs. Mach. Learn. 104(1), 55–98 (2016)

    Article  MathSciNet  Google Scholar 

  9. Vens, C., Struyf, J., Schietgat, L., Džeroski, S., Blockeel, H.: Decision trees for hierarchical multi-label classification. Mach. Learn. 73(2), 185–214 (2008)

    Article  Google Scholar 

  10. Džeroski, S.: Towards a general framework for data mining. In: Džeroski, S., Struyf, J. (eds.) KDID 2006. LNCS, vol. 4747, pp. 259–300. Springer, Heidelberg (2007). doi:10.1007/978-3-540-75549-4_16

    Chapter  Google Scholar 

  11. Blockeel, H., Struyf, J.: Efficient algorithms for decision tree cross-validation. J. Mach. Learn. Res. 3, 621–650 (2002)

    MATH  Google Scholar 

  12. Breiman, L., Friedman, J., Olshen, R., Stone, C.J.: Classification and Regression Trees. Chapman & Hall/CRC, Boca Raton (1984)

    MATH  Google Scholar 

  13. Madjarov, G., Kocev, D., Gjorgjevikj, D., Džeroski, S.: An extensive experimental comparison of methods for multi-label learning. Pattern Recogn. 45(9), 3084–3104 (2012)

    Article  Google Scholar 

  14. Slavkov, I., Gjorgjioski, V., Struyf, J., Džeroski, S.: Finding explained groups of time-course gene expression profiles with predictive clustering trees. Mol. BioSyst. 6(4), 729–740 (2010)

    Article  Google Scholar 

  15. Gamberger, D., Ženko, B., Mitelpunkt, A., Shachar, N., Lavrač, N.: Clusters of male and female alzheimers disease patients in the alzheimers disease neuroimaging initiative (adni) database. Brain Inf. 3(3), 169–179 (2016)

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge the financial support of the European Commission through the grants ICT-2013-612944 MAESTRA and ICT-2013-604102 HBP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vanja Mileski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Mileski, V., Džeroski, S., Kocev, D. (2017). Predictive Clustering Trees for Hierarchical Multi-Target Regression. In: Adams, N., Tucker, A., Weston, D. (eds) Advances in Intelligent Data Analysis XVI. IDA 2017. Lecture Notes in Computer Science(), vol 10584. Springer, Cham. https://doi.org/10.1007/978-3-319-68765-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68765-0_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68764-3

  • Online ISBN: 978-3-319-68765-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics