Nothing Special   »   [go: up one dir, main page]

Skip to main content

Mixed Dominating Set: A Parameterized Perspective

  • Conference paper
  • First Online:
Graph-Theoretic Concepts in Computer Science (WG 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10520))

Included in the following conference series:

Abstract

In the mixed dominating set (mds) problem, we are given an n-vertex graph G and a positive integer k, and the objective is to decide whether there exists a set \(S \subseteq V(G) \cup E(G)\) of cardinality at most k such that every element \(x \in (V(G) \cup E(G)) \setminus S\) is either adjacent to or incident with an element of S. We show that mds can be solved in time \({7.465^k n^{\mathcal {O}(1)}} \) on general graphs, and in time \(2^{\mathcal {O}(\sqrt{k})} n^{\mathcal {O}(1)}\) on planar graphs. We complement this result by showing that mds does not admit an algorithm with running time \(2^{o(k)} n^{\mathcal {O}(1)}\) unless the Exponential Time Hypothesis (ETH) fails, and that it does not admit a polynomial kernel unless coNP \( \subseteq \mathsf{NP / poly}\). In addition, we provide an algorithm which, given a graph G together with a tree decomposition of width \(\mathsf{tw}\), solves mds in time \(6^{\mathsf{tw}} n^{\mathcal {O}(1)}\). We finally show that unless the Set Cover Conjecture (SeCoCo) fails, mds does not admit an algorithm with running time \(\mathcal {O}((2-\epsilon )^{\mathsf{tw}(G)} n^{\mathcal {O}(1)})\) for any \(\epsilon >0\), where \(\mathsf{tw}(G)\) is the tree-width of G.

The research leading to these results have received funding from the European Research Council via ERC Advanced Investigator Grant 267959.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    \(\mathcal {O}^\star \) notation suppresses the polynomial factor. That is, \(\mathcal {O}(f(k)n^{\mathcal {O}(1)})=\mathcal {O}^\star (f(k))\).

References

  1. Alavi, Y., Behzad, M., Lesniak-Foster, L.M., Nordhaus, E.A.: Total matchings and total coverings of graphs. J. Graph Theor. 1(2), 135–140 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alavi, Y., Liu, J., Wang, J., Zhang, Z.: On total covers of graphs. Discrete Math. 100(1–3), 229–233 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  3. Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: Fourier meets möbius: fast subset convolution. In: STOC, pp. 67–74 (2007)

    Google Scholar 

  4. Bodlaender, H.L., Drange, P.G., Dregi, M.S., Fomin, F.V., Lokshtanov, D., Pilipczuk, M.: A c\({}^{\text{k}}\) n 5-approximation algorithm for treewidth. SIAM J. Comput. 45(2), 317–378 (2016). http://dx.doi.org/10.1137/130947374

  5. Bodlaender, H.L., Thomassé, S., Yeo, A.: Kernel bounds for disjoint cycles and disjoint paths. Theor. Comput. Sci. 412(35), 4570–4578 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cygan, M., Fomin, F.V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, Heidelberg (2015). doi:10.1007/978-3-319-21275-3

    Book  MATH  Google Scholar 

  7. Cygan, M., Dell, H., Lokshtanov, D., Marx, D., Nederlof, J., Okamoto, Y., Paturi, R., Saurabh, S., Wahlström, M.: On problems as hard as CNF-SAT. ACM Trans. Algorithms 12(3), 41:1–41:24 (2016)

    Article  MathSciNet  Google Scholar 

  8. Dom, M., Lokshtanov, D., Saurabh, S.: Kernelization lower bounds through colors and IDS. ACM Trans. Algorithms 11(2), 13:1–13:20 (2014)

    Article  MathSciNet  Google Scholar 

  9. Erdös, P., Meir, A.: On total matching numbers and total covering numbers of complementary graphs. Discrete Math. 19(3), 229–233 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fernau, H.: On parameterized enumeration. In: Ibarra, O.H., Zhang, L. (eds.) COCOON 2002. LNCS, vol. 2387, pp. 564–573. Springer, Heidelberg (2002). doi:10.1007/3-540-45655-4_60

    Chapter  Google Scholar 

  11. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman, New York (1979)

    MATH  Google Scholar 

  12. Gu, Q., Tamaki, H.: Improved bounds on the planar branchwidth with respect to the largest grid minor size. Algorithmica 64(3), 416–453 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hatami, P.: An approximation algorithm for the total covering problem. Discuss. Math. Graph Theor. 27(3), 553–558 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Haynes, T.W., Hedetniemi, S., Slater, P.: Fundamentals of Domination in Graphs. CRC Press, Boca Raton (1998)

    MATH  Google Scholar 

  15. Hedetniemi, S.M., Hedetniemi, S.T., Laskar, R., McRae, A., Majumdar, A.: Domination, independence and irredundance in total graphs: a brief survey. In: Proceedings of the 7th Quadrennial International Conference on the Theory and Applications of Graphs. vol. 2, pp. 671–683 (1995)

    Google Scholar 

  16. Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential complexity. J. Comput. Syst. Sci. 63(4), 512–530 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lan, J.K., Chang, G.J.: On the mixed domination problem in graphs. Theor. Comput. Sci. 476, 84–93 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Majumdar, A.: Neighborhood hypergraphs: a framework for covering and packing parameters in graphs. Ph.D. thesis, Clemson University (1992)

    Google Scholar 

  19. Manlove, D.: On the algorithmic complexity of twelve covering and independence parameters of graphs. Discrete Appl. Math. 91(1–3), 155–175 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  20. Meir, A.: On total covering and matching of graphs. J. Comb. Theor. Ser. B 24(2), 164–168 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  21. Micali, S., Vazirani, V.V.: An \(\cal{O}(\sqrt{|V|} |E|)\) algorithm for finding maximum matching in general graphs. In: FOCS, pp. 17–27 (1980)

    Google Scholar 

  22. Peled, U.N., Sun, F.: Total matchings and total coverings of threshold graphs. Discrete Appl. Math. 49(1–3), 325–330 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  23. Rajaati, M., Hooshmandasl, M.R., Dinneen, M.J., Shakiba, A.: On fixed-parameter tractability of the mixed domination problem for graphs with bounded tree-width. CoRR abs/1612.08234 (2016)

    Google Scholar 

  24. Robertson, N., Seymour, P.D., Thomas, R.: Quickly excluding a planar graph. J. Comb. Theor. Ser. B 62(2), 323–348 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  25. Yannakakis, M., Gavril, F.: Edge dominating sets in graphs. SIAM J. Appl. Math. 38(3), 364–372 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  26. Zhao, Y., Kang, L., Sohn, M.Y.: The algorithmic complexity of mixed domination in graphs. Theor. Comput. Sci. 412(22), 2387–2392 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhishek Sahu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jain, P., Jayakrishnan, M., Panolan, F., Sahu, A. (2017). Mixed Dominating Set: A Parameterized Perspective. In: Bodlaender, H., Woeginger, G. (eds) Graph-Theoretic Concepts in Computer Science. WG 2017. Lecture Notes in Computer Science(), vol 10520. Springer, Cham. https://doi.org/10.1007/978-3-319-68705-6_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68705-6_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68704-9

  • Online ISBN: 978-3-319-68705-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics