Nothing Special   »   [go: up one dir, main page]

Skip to main content

Model Checking Pushdown Epistemic Game Structures

  • Conference paper
  • First Online:
Formal Methods and Software Engineering (ICFEM 2017)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 10610))

Included in the following conference series:

  • 994 Accesses

Abstract

In this paper, we investigate the problem of verifying pushdown multi-agent systems with imperfect information. As the formal model, we introduce pushdown epistemic game structures (PEGSs), an extension of pushdown game structures with epistemic accessibility relations (EARs). For the specification, we consider extensions of alternating-time temporal logics with epistemic modalities: ATEL, ATEL\(^*\) and AEMC. We study the model checking problems for ATEL, ATEL\(^*\) and AEMC over PEGSs under various imperfect information settings. For ATEL and ATEL\(^*\), we show that size-preserving EARs, a common definition of the accessibility relation in the literature of games over pushdown systems with imperfect information, will render the model checking problem undecidable under imperfect information and imperfect recall setting. We then propose regular EARs, and provide automata-theoretic model checking algorithms with matching low bounds, i.e., EXPTIME-complete for ATEL and 2EXPTIME-complete for ATEL\(^*\). In contrast, for AEMC, we show that the model checking problem is EXPTIME-complete even in the presence of size-preserving EARs.

This work was partially supported by NSFC grant (61402179, 61532019, 61662035, 61572478, 61472474, 61100062, and 61272135), UK EPSRC grant (EP/P00430X/1), and European CHIST-ERA project SUCCESS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    One may notice that, in the definition of PEGSs, \(\varDelta \) is defined as a complete function \(P\times \varGamma \times \mathcal {D}\rightarrow P\times \varGamma ^*\), meaning that all actions are available to each agent. This does not restrict the expressiveness of PEGSs, as we can easily add transitions to some additional sink state to simulate the situation where some actions are unavailable to some agents.

  2. 2.

    “complete” means that \(\varDelta (q, \gamma )\) is defined for each \((q,\gamma ) \in Q \times \varGamma \).

  3. 3.

    Since normal PEGS only pops one symbol from the stack at one step, in order to pop m symbols, we need to introduce some additional control states as done in [30].

  4. 4.

    \(\langle {\emptyset }\rangle \) (resp. \([{\emptyset }]\)) is the universal (resp. existential) path quantification A (resp. E).

References

  1. Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. In: FOCS 1997, pp. 100–109 (1997)

    Google Scholar 

  2. Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. J. ACM 49(5), 672–713 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Aminof, B., Legay, A., Murano, A., Serre, O., Vardi, M.Y.: Pushdown module checking with imperfect information. Inf. Comput. 223, 1–17 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bouajjani, A., Esparza, J., Maler, O.: Reachability analysis of pushdown automata: application to model-checking. In: Mazurkiewicz, A., Winkowski, J. (eds.) CONCUR 1997. LNCS, vol. 1243, pp. 135–150. Springer, Heidelberg (1997). doi:10.1007/3-540-63141-0_10

    Google Scholar 

  5. Bozzelli, L.: Complexity results on branching-time pushdown model checking. Theoret. Comput. Sci. 379(1–2), 286–297 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brihaye, T., Laroussinie, F., Markey, N., Oreiby, G.: Timed concurrent game structures. In: Caires, L., Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS, vol. 4703, pp. 445–459. Springer, Heidelberg (2007). doi:10.1007/978-3-540-74407-8_30

    Chapter  Google Scholar 

  7. Bulling, N., Jamroga, W.: Alternating epistemic mu-calculus. In: IJCAI 2011, pp. 109–114 (2011)

    Google Scholar 

  8. Bulling, N., Nguyen, H.N.: Model checking resource bounded systems with shared resources via alternating büchi pushdown systems. In: Chen, Q., Torroni, P., Villata, S., Hsu, J., Omicini, A. (eds.) PRIMA 2015. LNCS (LNAI), vol. 9387, pp. 640–649. Springer, Cham (2015). doi:10.1007/978-3-319-25524-8_47

    Chapter  Google Scholar 

  9. Cermák, Petr: A model checker for strategy logic. Meng individual project, Department of Computing, Imperial College, London (2015)

    Google Scholar 

  10. Cermák, P., Lomuscio, A., Murano, A.: Verifying and synthesising multi-agent systems against one-goal strategy logic specifications. In: AAAI 2015, pp. 2038–2044 (2015)

    Google Scholar 

  11. Chen, T., Forejt, V., Kwiatkowska, M.Z., Parker, D., Simaitis, A.: Automatic verification of competitive stochastic systems. Formal Methods Syst. Des. 43(1), 61–92 (2013)

    Article  MATH  Google Scholar 

  12. Chen, T., Forejt, V., Kwiatkowska, M., Parker, D., Simaitis, A.: PRISM-games: a model checker for stochastic multi-player games. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp. 185–191. Springer, Heidelberg (2013). doi:10.1007/978-3-642-36742-7_13

    Chapter  Google Scholar 

  13. Chen, T., Song, F., Wu, Z.: Global model checking on pushdown multi-agent systems. In: AAAI 2016, pp. 2459–2465 (2016)

    Google Scholar 

  14. Chen, T., Song, F., Wu, Z.: Verifying pushdown multi-agent systems against strategy logics. In: IJCAI 2016, pp. 180–186 (2016)

    Google Scholar 

  15. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge (2001)

    Book  Google Scholar 

  16. Dima, C., Tiplea, F.L.: Model-checking ATL under imperfect information and perfect recall semantics is undecidable. CoRR, abs/1102.4225 (2011)

    Google Scholar 

  17. Esparza, J., Kucera, A., Schwoon, S.: Model checking LTL with regular valuations for pushdown systems. Inf. Comput. 186(2), 355–376 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning About Knowledge. MIT Press, Cambridge (1995)

    MATH  Google Scholar 

  19. Jamroga, W.: Some remarks on alternating temporal epistemic logic. In: FAMAS 2003, pp. 133–140 (2003)

    Google Scholar 

  20. Jamroga, W., Dix, J.: Model checking abilities under incomplete information is indeed Delta2-complete. In: EUMAS 2006 (2006)

    Google Scholar 

  21. Kupferman, O., Piterman, N., Vardi, M.Y.: Pushdown specifications. In: Baaz, M., Voronkov, A. (eds.) LPAR 2002. LNCS (LNAI), vol. 2514, pp. 262–277. Springer, Heidelberg (2002). doi:10.1007/3-540-36078-6_18

    Chapter  Google Scholar 

  22. Lomuscio, A., Raimondi, F.: Model checking knowledge, strategies, and games in multi-agent systems. In: AAMAS 2006, pp. 161–168 (2006)

    Google Scholar 

  23. Mogavero, F., Murano, A., Perelli, G., Vardi, M.Y.: Reasoning about strategies: on the model-checking problem. ACM Trans. Comput. Logic 15(4), 34:1–34:47 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  24. Mogavero, F., Murano, A., Sauro, L.: On the boundary of behavioral strategies. In: LICS 2013, pp. 263–272 (2013)

    Google Scholar 

  25. Mogavero, F., Murano, A., Sauro, L.: A behavioral hierarchy of strategy logic. In: Bulling, N., Torre, L., Villata, S., Jamroga, W., Vasconcelos, W. (eds.) CLIMA 2014. LNCS (LNAI), vol. 8624, pp. 148–165. Springer, Cham (2014). doi:10.1007/978-3-319-09764-0_10

    Google Scholar 

  26. Mogavero, F., Murano, A., Vardi, M.Y.: Reasoning about strategies. In: FSTTCS 2010, pp. 133–144 (2010)

    Google Scholar 

  27. Murano, A., Perelli, G.: Pushdown multi-agent system verification. In: IJCAI 2015, pp. 1090–1097 (2015)

    Google Scholar 

  28. Pilecki, J., Bednarczyk, M.A., Jamroga, W.: Model checking properties of multi-agent systems with imperfect information and imperfect recall. In: IS 2014, pp. 415–426 (2014)

    Google Scholar 

  29. Schobbens, P.-Y.: Alternating-time logic with imperfect recall. Electron. Notes Theoret. Comput. Sci. 85(2), 82–93 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  30. Schwoon, S.: Model checking pushdown systems. Ph.D. thesis, Technical University Munich, Germany (2002)

    Google Scholar 

  31. Song, F., Touili, T.: Efficient CTL model-checking for pushdown systems. In: Katoen, J.-P., König, B. (eds.) CONCUR 2011. LNCS, vol. 6901, pp. 434–449. Springer, Heidelberg (2011). doi:10.1007/978-3-642-23217-6_29

    Chapter  Google Scholar 

  32. Song, F., Touili, T.: Efficient CTL model-checking for pushdown systems. Theoret. Comput. Sci. 549, 127–145 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  33. van der Hoek, W., Wooldridge, M.: Tractable multiagent planning for epistemic goals. In: AAMAS 2002, pp. 1167–1174 (2002)

    Google Scholar 

  34. van der Hoek, W., Wooldridge, M.: Cooperation, knowledge, and time: alternating-time temporal epistemic logic and its applications. Stud. Logica 75(1), 125–157 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  35. Walukiewicz, I.: Model checking CTL properties of pushdown systems. In: Kapoor, S., Prasad, S. (eds.) FSTTCS 2000. LNCS, vol. 1974, pp. 127–138. Springer, Heidelberg (2000). doi:10.1007/3-540-44450-5_10

    Chapter  Google Scholar 

  36. Hague, M., Ong, C.-H.L.: A saturation method for the modal \(\mu \)-calculus over pushdown systems. Inf. Comput. 209(5), 799–821 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fu Song .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Chen, T., Song, F., Wu, Z. (2017). Model Checking Pushdown Epistemic Game Structures. In: Duan, Z., Ong, L. (eds) Formal Methods and Software Engineering. ICFEM 2017. Lecture Notes in Computer Science(), vol 10610. Springer, Cham. https://doi.org/10.1007/978-3-319-68690-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68690-5_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68689-9

  • Online ISBN: 978-3-319-68690-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics