Nothing Special   »   [go: up one dir, main page]

Skip to main content

Assertion Generation Through Active Learning

  • Conference paper
  • First Online:
Formal Methods and Software Engineering (ICFEM 2017)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 10610))

Included in the following conference series:

Abstract

Program assertions are useful for many program analysis tasks. They are however often missing in practice. Many approaches have been developed to generate assertions automatically. Existing methods are either based on generalizing from a set of test cases (e.g., Daikon), or based on some forms of symbolic execution. In this work, we develop a novel approach for generating likely assertions automatically based on active learning. Our targets are complex Java programs which are challenging for symbolic execution. Our key idea is to generate candidate assertions based on test cases and then apply active learning techniques to iteratively improve them. We evaluate our approach using two sets of programs, i.e., 425 methods from three popular Java projects from GitHub and 10 programs from the SVComp repository. We evaluate the ‘correctness’ of the assertions either by comparing them with existing assertion-like checking conditions, or by comparing them with the documentation, or by verifying them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Refer to recent development on supporting polymorphism in symbolic execution in [17].

References

  1. http://sav.sutd.edu.sg/alearner

  2. http://sv-comp.sosy-lab.org/2016/

  3. Alur, R., Černỳ, P., Madhusudan, P., Nam, W.: Synthesis of interface specifications for java classes. In: POPL, pp. 98–109. ACM (2005)

    Google Scholar 

  4. Beller, M., Gousios, G., Panichella, A., Zaidman, A.: When, how, and why developers (do not) test in their IDEs. In: ESEC/FSE, pp. 179–190. ACM (2015)

    Google Scholar 

  5. Beller, M., Gousios, G., Zaidman, A.: How (much) do developers test? In: ICSE, pp. 559–562. IEEE (2015)

    Google Scholar 

  6. Boshernitsan, M., Doong, R., Savoia, A.: From daikon to agitator: lessons and challenges in building a commercial tool for developer testing. In: ISSTA, pp. 169–180. ACM (2006)

    Google Scholar 

  7. Bshouty, N.H., Goldman, S.A., Mathias, H.D., Suri, S., Tamaki, H.: Noise-tolerant distribution-free learning of general geometric concepts. JACM 45(5), 863–890 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chapelle, O.: Training a support vector machine in the primal. Neural Comput. 19(5), 1155–1178 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cohn, D.: Active learning. In: Sammut, C., Webb, G.I. (eds.) Encyclopedia of Machine Learning, pp. 10–14. Springer, New York (2010)

    Google Scholar 

  10. Csallner, C., Tillmann, N., Smaragdakis, Y.: DySy: Dynamic symbolic execution for invariant inference. In: ICSE, pp. 281–290. ACM (2008)

    Google Scholar 

  11. Ernst, M.D., Cockrell, J., Griswold, W.G., Notkin, D.: Dynamically discovering likely program invariants to support program evolution. IEEE Trans. Software Eng. 27(2), 99–123 (2001)

    Article  Google Scholar 

  12. Ernst, M.D., Perkins, J.H., Guo, P.J., McCamant, S., Pacheco, C., Tschantz, M.S., Xiao, C.: The daikon system for dynamic detection of likely invariants. Sci. Comput. Program. 69(1), 35–45 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Garg, P., Löding, C., Madhusudan, P., Neider, D.: ICE: a robust framework for learning invariants. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 69–87. Springer, Cham (2014). doi:10.1007/978-3-319-08867-9_5

    Google Scholar 

  14. Garg, P., Neider, D., Madhusudan, P., Roth, D.: Learning invariants using decision trees and implication counterexamples. In: POPL, pp. 499–512. ACM (2016)

    Google Scholar 

  15. Hoare, C.A.R.: Assertions: a personal perspective. IEEE Ann. Hist. Comput. 25(2), 14–25 (2003)

    Article  MathSciNet  Google Scholar 

  16. Krishna, S., Puhrsch, C., Wies, T.: Learning invariants using decision trees. arXiv preprint arXiv:1501.04725 (2015)

  17. Li, L., Lu, Y., Xue, J.: Dynamic symbolic execution for polymorphism. In: CC, pp. 120–130. ACM (2017)

    Google Scholar 

  18. Nguyen, T., Kapur, D., Weimer, W., Forrest, S.: DIG: a dynamic invariant generator for polynomial and array invariants. ACM Trans. Softw. Eng. Methodol. 23(4), 30 (2014)

    Article  Google Scholar 

  19. Nguyen, T., Kapur, D., Weimer, W., Forrest, S.: Using dynamic analysis to generate disjunctive invariants. In: ICSE, pp. 608–619. ACM (2014)

    Google Scholar 

  20. Pacheco, C., Lahiri, S.K., Ernst, M.D., Ball, T.: Feedback-directed random test generation. In: ICSE, pp. 75–84. IEEE (2007)

    Google Scholar 

  21. Padhi, S., Sharma, R., Millstein, T.: Data-driven precondition inference with learned features. In: PLDI, pp. 42–56. ACM (2016)

    Google Scholar 

  22. Sankaranarayanan, S., Chaudhuri, S., Ivančić, F., Gupta, A.: Dynamic inference of likely data preconditions over predicates by tree learning. In: ISSTA, pp. 295–306. ACM (2008)

    Google Scholar 

  23. Schohn, G., Cohn, D.: Less is more: active learning with support vector machines. In: ICML, pp. 839–846 (2000)

    Google Scholar 

  24. Sharma, R., Aiken, A.: From invariant checking to invariant inference using randomized search. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 88–105. Springer, Cham (2014). doi:10.1007/978-3-319-08867-9_6

    Google Scholar 

  25. Sharma, R., Gupta, S., Hariharan, B., Aiken, A., Liang, P., Nori, A.V.: A data driven approach for algebraic loop invariants. In: Felleisen, M., Gardner, P. (eds.) ESOP 2013. LNCS, vol. 7792, pp. 574–592. Springer, Heidelberg (2013). doi:10.1007/978-3-642-37036-6_31

    Chapter  Google Scholar 

  26. Sharma, R., Gupta, S., Hariharan, B., Aiken, A., Nori, A.V.: Verification as learning geometric concepts. In: Logozzo, F., Fähndrich, M. (eds.) SAS 2013. LNCS, vol. 7935, pp. 388–411. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38856-9_21

    Chapter  Google Scholar 

  27. Sharma, R., Nori, A.V., Aiken, A.: Interpolants as classifiers. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 71–87. Springer, Heidelberg (2012). doi:10.1007/978-3-642-31424-7_11

    Chapter  Google Scholar 

  28. Somenzi, F., Bradley, A.R.: IC3: where monolithic and incremental meet. In: FMCAD, pp. 3–8 (2011)

    Google Scholar 

  29. Sun, J., Xiao, H., Liu, Y., Lin, S., Qin, S.: TLV: abstraction through testing, learning, and validation. In: ESEC/FSE, pp. 698–709. ACM (2015)

    Google Scholar 

  30. Tong, S., Chang, E.Y.: Support vector machine active learning for image retrieval. In: MULTIMEDIA, pp. 107–118. ACM(2001)

    Google Scholar 

  31. Tong, S., Koller, D.: Support vector machine active learning with applications to text classification. J. Mach. Learn. Res. 2, 45–66 (2001)

    MATH  Google Scholar 

  32. Wei, Y., Furia, C.A., Kazmin, N., Meyer, B.: Inferring better contracts. In: ICSE, pp. 191–200. ACM (2011)

    Google Scholar 

  33. Xiao, H., Sun, J., Liu, Y., Lin, S., Sun, C.: TzuYu: Learning stateful typestates. In: ASE, pp. 432–442. IEEE (2013)

    Google Scholar 

  34. Xie, T., Notkin, D.: Mutually enhancing test generation and specification inference. In: Petrenko, A., Ulrich, A. (eds.) FATES 2003. LNCS, vol. 2931, pp. 60–69. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24617-6_5

    Chapter  Google Scholar 

  35. Zhang, L., Yang, G., Rungta, N., Person, S., Khurshid, S.: Feedback-driven dynamic invariant discovery. In: ISSTA, pp. 362–372. ACM (2014)

    Google Scholar 

Download references

Acknowledgments

This research was funded by the project T2MOE1704.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Long H. Pham .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

H. Pham, L., Tran Thi, L.L., Sun, J. (2017). Assertion Generation Through Active Learning. In: Duan, Z., Ong, L. (eds) Formal Methods and Software Engineering. ICFEM 2017. Lecture Notes in Computer Science(), vol 10610. Springer, Cham. https://doi.org/10.1007/978-3-319-68690-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68690-5_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68689-9

  • Online ISBN: 978-3-319-68690-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics