Abstract
A third of the food consumed by humankind depends on bees’ activities. These insects have a fundamental role in pollination and they are disappearing from the planet. An understanding of their behavior, discussed here from the point of view of their activity level, can help detect adverse situations and even improve the employment of bees in crops. In this work, several Recurrent Neural Networks’ architectures, alternating topologies with GRU and LSTM structures, are evaluated in the task of forecasting bees’ activity level based on the values of past levels. We also show how RNNs can improve its accuracy by evaluating how different input time windows impact on results.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Almeida, G.F.: Fatores que interferem no comportamento enxameatrio de abelhas africanizadas. Departamento de Biologia, Programa de Ps-Graduao em Entomologia (2008)
Braga, A., Ludemir, T., Carvalho, A.: Redes Neurais Artificiais: Teoria e Aplicaes. LTC editora (2000)
CETAPIS: Sem abelha sem alimento (2013). http://www.semabelhasemalimento.com.br/home/polinizacao
Chena, C., Yangb, E.C., Jianga, J.A., Lina, T.T.: An imaging system for monitoring the in-and-out activity of honey bees. Comput. Electron. Agric. 89, 100–109 (2012)
Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014)
Faiçal, B.S., Pessin, G., Filho, G.P., Carvalho, A.C., Gomes, P.H., Ueyama, J.: Fine-tuning of uav control rules for spraying pesticides on crop fields: An approach for dynamic environments. Int. J. Artif. Intell. Tools 25(01), 1660003 (2016)
Furquim, G., Pessin, G., Faial, B.S., Mendiondo, E.M., Ueyama, J.: Improving the accuracy of a flood forecasting model by means of machine learning and chaos theory. Neural Comput. Appl. 27, 1129–1141 (2015)
Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2016). http://www.deeplearningbook.org
Gullan, P., Cranston, P.: Os insetos: um resumo entomolgico. Traduo de Sonia Hoenen, Roca (2008)
Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)
Chung, J., Caglar Gulcehre, K.C., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. In: NIPS 2014 Deep Learning and Representation Learning Workshop (2014)
Martens, J., Sutskever, I.: Learning recurrent neural networks with hessian-free optimization. In: International Conference on Machine Learning, vol. 28, Bellevue, WA, USA (2011)
Message, D., Teixeira, E.W., Jong, D.D.: Polinizadores no Brasil: Contribuio e Per-spectivas para a Biodiversidade, Uso Sustentvel, Conservao e Servios Ambientais. Editora da Universidade (2012)
Pettis, J.S., Lichtenberg, E.M., Andree, M., Stitzinger, J., Rose, R., van Engelsdorp, D.: Crop pollination exposes honey bees to pesticides which alters their susceptibility to the gut pathogen nosema ceranae. PLoS ONE (2013)
Potts, S.G., Roberts, S.P.M., Dean, R., Marris, G., Brown, M., Jones, R., Settele, J.: Declines of managed honey bees and beekeepers in europe. J. Apic. Res. 49, 15–22 (2009)
Robinson, A.J., Fallside, F.: The utility driven dynamic error propagation network. Cambridge University Engineering Department (1987)
Rumelhart, D., Hinton, G., Williams, R.: Learning representations by back-propagating errors. Nature 323, 533–536 (1986). http://www.nature.com/
Schwager, M., Anderson, D.M., Butler, Z., Rus, D.: Robust classification of animal tracking data. Comput. Electron. Agric. 56(2007), 4659 (2006)
Souza, P., Williams, R.: Agent-based modeling of honey bee forager flight behaviour for swarm sensing applications. Environmental Modelling and Software (2017). (under review)
Werbos, P.J.: Generalization of backpropagation with application to a recurrent gas market model. Neural Netw. 1, 339–356 (1987)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Gomes, P.A.B., de Carvalho, E.C., Arruda, H.M., de Souza, P., Pessin, G. (2017). Exploiting Recurrent Neural Networks in the Forecasting of Bees’ Level of Activity. In: Lintas, A., Rovetta, S., Verschure, P., Villa, A. (eds) Artificial Neural Networks and Machine Learning – ICANN 2017. ICANN 2017. Lecture Notes in Computer Science(), vol 10613. Springer, Cham. https://doi.org/10.1007/978-3-319-68600-4_30
Download citation
DOI: https://doi.org/10.1007/978-3-319-68600-4_30
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-68599-1
Online ISBN: 978-3-319-68600-4
eBook Packages: Computer ScienceComputer Science (R0)