Nothing Special   »   [go: up one dir, main page]

Skip to main content

Exploiting Recurrent Neural Networks in the Forecasting of Bees’ Level of Activity

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2017 (ICANN 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10613))

Included in the following conference series:

Abstract

A third of the food consumed by humankind depends on bees’ activities. These insects have a fundamental role in pollination and they are disappearing from the planet. An understanding of their behavior, discussed here from the point of view of their activity level, can help detect adverse situations and even improve the employment of bees in crops. In this work, several Recurrent Neural Networks’ architectures, alternating topologies with GRU and LSTM structures, are evaluated in the task of forecasting bees’ activity level based on the values of past levels. We also show how RNNs can improve its accuracy by evaluating how different input time windows impact on results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Almeida, G.F.: Fatores que interferem no comportamento enxameatrio de abelhas africanizadas. Departamento de Biologia, Programa de Ps-Graduao em Entomologia (2008)

    Google Scholar 

  2. Braga, A., Ludemir, T., Carvalho, A.: Redes Neurais Artificiais: Teoria e Aplicaes. LTC editora (2000)

    Google Scholar 

  3. CETAPIS: Sem abelha sem alimento (2013). http://www.semabelhasemalimento.com.br/home/polinizacao

  4. Chena, C., Yangb, E.C., Jianga, J.A., Lina, T.T.: An imaging system for monitoring the in-and-out activity of honey bees. Comput. Electron. Agric. 89, 100–109 (2012)

    Article  Google Scholar 

  5. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014)

  6. Faiçal, B.S., Pessin, G., Filho, G.P., Carvalho, A.C., Gomes, P.H., Ueyama, J.: Fine-tuning of uav control rules for spraying pesticides on crop fields: An approach for dynamic environments. Int. J. Artif. Intell. Tools 25(01), 1660003 (2016)

    Article  Google Scholar 

  7. Furquim, G., Pessin, G., Faial, B.S., Mendiondo, E.M., Ueyama, J.: Improving the accuracy of a flood forecasting model by means of machine learning and chaos theory. Neural Comput. Appl. 27, 1129–1141 (2015)

    Article  Google Scholar 

  8. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2016). http://www.deeplearningbook.org

  9. Gullan, P., Cranston, P.: Os insetos: um resumo entomolgico. Traduo de Sonia Hoenen, Roca (2008)

    Google Scholar 

  10. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  11. Chung, J., Caglar Gulcehre, K.C., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. In: NIPS 2014 Deep Learning and Representation Learning Workshop (2014)

    Google Scholar 

  12. Martens, J., Sutskever, I.: Learning recurrent neural networks with hessian-free optimization. In: International Conference on Machine Learning, vol. 28, Bellevue, WA, USA (2011)

    Google Scholar 

  13. Message, D., Teixeira, E.W., Jong, D.D.: Polinizadores no Brasil: Contribuio e Per-spectivas para a Biodiversidade, Uso Sustentvel, Conservao e Servios Ambientais. Editora da Universidade (2012)

    Google Scholar 

  14. Pettis, J.S., Lichtenberg, E.M., Andree, M., Stitzinger, J., Rose, R., van Engelsdorp, D.: Crop pollination exposes honey bees to pesticides which alters their susceptibility to the gut pathogen nosema ceranae. PLoS ONE (2013)

    Google Scholar 

  15. Potts, S.G., Roberts, S.P.M., Dean, R., Marris, G., Brown, M., Jones, R., Settele, J.: Declines of managed honey bees and beekeepers in europe. J. Apic. Res. 49, 15–22 (2009)

    Article  Google Scholar 

  16. Robinson, A.J., Fallside, F.: The utility driven dynamic error propagation network. Cambridge University Engineering Department (1987)

    Google Scholar 

  17. Rumelhart, D., Hinton, G., Williams, R.: Learning representations by back-propagating errors. Nature 323, 533–536 (1986). http://www.nature.com/

    Article  MATH  Google Scholar 

  18. Schwager, M., Anderson, D.M., Butler, Z., Rus, D.: Robust classification of animal tracking data. Comput. Electron. Agric. 56(2007), 4659 (2006)

    Google Scholar 

  19. Souza, P., Williams, R.: Agent-based modeling of honey bee forager flight behaviour for swarm sensing applications. Environmental Modelling and Software (2017). (under review)

    Google Scholar 

  20. Werbos, P.J.: Generalization of backpropagation with application to a recurrent gas market model. Neural Netw. 1, 339–356 (1987)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gustavo Pessin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Gomes, P.A.B., de Carvalho, E.C., Arruda, H.M., de Souza, P., Pessin, G. (2017). Exploiting Recurrent Neural Networks in the Forecasting of Bees’ Level of Activity. In: Lintas, A., Rovetta, S., Verschure, P., Villa, A. (eds) Artificial Neural Networks and Machine Learning – ICANN 2017. ICANN 2017. Lecture Notes in Computer Science(), vol 10613. Springer, Cham. https://doi.org/10.1007/978-3-319-68600-4_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68600-4_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68599-1

  • Online ISBN: 978-3-319-68600-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics