Nothing Special   »   [go: up one dir, main page]

Skip to main content

Monocular Epipolar Constraint for Optical Flow Estimation

  • Conference paper
  • First Online:
Computer Vision Systems (ICVS 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10528))

Included in the following conference series:

Abstract

In this paper, the usage of the monocular epipolar geometry for the calculation of optical flow is investigated. We derive the necessary formulation to use the epipolar constraint for the calculation of differential optical flow using the total variational model in a multi-resolution pyramid scheme. Therefore, we minimize an objective function which contains the epipolar constraint with a residual function based on different types of descriptors (brightness, HOG, CENSUS and MLDP). For the calculation of epipolar lines, the relevant fundamental matrices are calculated based on the 7- and 8- point methods. Moreover, SIFT and Lukas-Kanade methods are used to obtain matched features between two consecutive frames, by which fundamental matrices can be calculated. The effect of using different combination of the feature matching methods, fundamental matrix calculation and descriptors are evaluated based on the KITTI 2012 dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bernd, K., Henning, L.: Trinocular optical flow estimation for intelligent vehicle applications. In: 15th International IEEE Conference on Intelligent Transportation Systems (ITSC). IEEE, September 2012

    Google Scholar 

  2. Brox, T., Bruhn, A., Papenberg, N., Weickert, J.: High accuracy optical flow estimation based on a theory for warping. In: Pajdla, T., Matas, J. (eds.) ECCV 2004. LNCS, vol. 3024, pp. 25–36. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24673-2_3

    Chapter  Google Scholar 

  3. Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: the KITTI dataset. Int. J. Robot. Res. (IJRR) 32, 1231–1237 (2013)

    Article  Google Scholar 

  4. Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press, New York (2003)

    MATH  Google Scholar 

  5. Kennedy, R., Taylor, C.J.: Optical flow with geometric occlusion estimation and fusion of multiple frames. In: Tai, X.-C., Bae, E., Chan, T.F., Lysaker, M. (eds.) EMMCVPR 2015. LNCS, vol. 8932, pp. 364–377. Springer, Cham (2015). doi:10.1007/978-3-319-14612-6_27

    Google Scholar 

  6. Mohamed, M., Mertsching, B.: TV-L1 optical flow estimation with image details recovering based on modified census transform. Adv. Vis. Comput. 7431, 482–491 (2012)

    Google Scholar 

  7. Mohamed, M.A., Mirabdollah, M.H., Mertsching, B.: Differential optical flow estimation under monocular epipolar line constraint. In: Nalpantidis, L., Krüger, V., Eklundh, J.-O., Gasteratos, A. (eds.) ICVS 2015. LNCS, vol. 9163, pp. 354–363. Springer, Cham (2015). doi:10.1007/978-3-319-20904-3_32

    Chapter  Google Scholar 

  8. Mohamed, M.A., Boddeker, C., Mertsching, B.: Real-time moving objects tracking for mobile-robots using motion information. In: 2014 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR), pp. 1–6. IEEE (2014)

    Google Scholar 

  9. Mohamed, M.A., Rashwan, H.A., Mertsching, B., Garcia, M.A., Puig, D.: On improving the robustness of variational optical flow against illumination changes. In: Proceedings of the 4th ACM/IEEE International Workshop on Analysis and Retrieval of Tracked Events and Motion in Imagery Stream, pp. 1–8. ACM (2013)

    Google Scholar 

  10. Mohamed, M.A., Rashwan, H.A., Mertsching, B., Garcia, M.A., Puig, D.: Illumination-robust optical flow using a local directional pattern. IEEE Trans. Circuits Syst. Video Technol. 24, 1–9 (2014)

    Article  Google Scholar 

  11. Müller, T., Rabe, C., Rannacher, J., Franke, U., Mester, R.: Illumination-robust dense optical flow using census signatures. In: Mester, R., Felsberg, M. (eds.) DAGM 2011. LNCS, vol. 6835, pp. 236–245. Springer, Heidelberg (2011). doi:10.1007/978-3-642-23123-0_24

    Chapter  Google Scholar 

  12. Ranftl, R., Vineet, V., Chen, Q., Koltun, V.: Dense monocular depth estimation in complex dynamic scenes. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4058–4066, June 2016

    Google Scholar 

  13. Rashwan, H.A., Mohamed, M.A., García, M.A., Mertsching, B., Puig, D.: Illumination robust optical flow model based on histogram of oriented gradients. In: Weickert, J., Hein, M., Schiele, B. (eds.) GCPR 2013. LNCS, vol. 8142, pp. 354–363. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40602-7_38

    Chapter  Google Scholar 

  14. Revaud, J., Weinzaepfel, P., Harchaoui, Z., Schmid, C.: Epicflow: edge-preserving interpolation of correspondences for optical flow. In: The IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015, Boston, MA, USA, 7–12, June, pp. 1164–1172. IEEE (2015)

    Google Scholar 

  15. Taniai, T., Sinha, S., Sato, Y.: Fast multi-frame stereo scene flow with motion segmentation. In: The IEEE Computer Vision and Pattern Recognition (CVPR). IEEE, March 2017

    Google Scholar 

  16. Valgaerts, L., Bruhn, A., Weickert, J.: A variational model for the joint recovery of the fundamental matrix and the optical flow. In: Rigoll, G. (ed.) DAGM 2008. LNCS, vol. 5096, pp. 314–324. Springer, Heidelberg (2008). doi:10.1007/978-3-540-69321-5_32

    Chapter  Google Scholar 

  17. Yamaguchi, K., McAllester, D.A., Urtasun, R.: Robust monocular epipolar flow estimation. In: The IEEE Computer Vision and Pattern Recognition (CVPR), pp. 1862–1869. IEEE (2013)

    Google Scholar 

  18. Zach, C., Pock, T., Bischof, H.: A duality based approach for realtime TV-L 1 optical flow. In: Hamprecht, F.A., Schnörr, C., Jähne, B. (eds.) DAGM 2007. LNCS, vol. 4713, pp. 214–223. Springer, Heidelberg (2007). doi:10.1007/978-3-540-74936-3_22

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud A. Mohamed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Mohamed, M.A., Mirabdollah, M.H., Mertsching, B. (2017). Monocular Epipolar Constraint for Optical Flow Estimation. In: Liu, M., Chen, H., Vincze, M. (eds) Computer Vision Systems. ICVS 2017. Lecture Notes in Computer Science(), vol 10528. Springer, Cham. https://doi.org/10.1007/978-3-319-68345-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68345-4_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68344-7

  • Online ISBN: 978-3-319-68345-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics