Abstract
Recent advances in the information technology made possible to introduce many Unicode Telugu fonts for the documentation needs of present society. But the recognition of documents printed in a variety of fonts poses new challenges in building Telugu OCR systems. In this paper, we demonstrate multi-font Telugu printed word recognition using implicit segmentation approach that provides segmentation as a by-product of recognition. Our word recognition approach relies on Hidden Markov Models and akshara bi-gram language model to recognize word images in terms of aksharas (characters). The training set of word images is prepared from document images of popular books and the synthetic document images generated using 8 different Unicode fonts. The testing involves matching the feature vector sequence against sequence of akshara HMMs based on bi-grams. The CER and WER of this system are 21% and 37% respectively. The performance of our system is very encouraging.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bazzi, I., Schwartz, R., Makhoul, J.: An omnifont open-vocabulary OCR system for English and Arabic. IEEE Trans. Pattern Anal. Mach. Intell. 21(6), 495–504 (1999)
Elms, A., Procter, S., Illingworth, J.: The advantage of using an HMM-based approach for faxed word recognition. Int. J. Doc. Anal. Recogn. 1(1), 18–36 (1998)
Khorsheed, M.S.: Offline recognition of omnifont Arabic text using the HMM toolkit (HTK). Pattern Recogn. Lett. 28(12), 1563–1571 (2007)
Krishnan, P., Sankaran, N., Singh, A.K., Jawahar, C.V.: Towards a robust OCR system for Indic scripts. In: 2014 11th IAPR International Workshop on Document Analysis Systems (DAS), pp. 141–145, April 2014
Kumar, P.P., Bhagvati, C., Negi, A., Agarwal, A., Deekshatulu, B.L.: Towards improving the accuracy of Telugu OCR systems. In: ICDAR, pp. 910–914. IEEE Computer Society (2011)
Lam, L., Lee, S.-W., Suen, C.: Thinning methodologies-a comprehensive survey. IEEE Trans. Pattern Anal. Mach. Intell. 14(9), 869–885 (1992)
Natarajan, P., Lu, Z., Schwartz, R., Bazzi, I., Makhoul, J.: Multilingual machine printed OCR. Int. J. Pattern Recogn. Artif. Intell. 15(01), 43–63 (2001)
Natarajan, P., MacRostie, E., Decerbo, M.: The BBN byblos Hindi OCR system. In: Govindaraju, V., Setlur, S. (eds.) Guide to OCR for Indic Scripts. Advances in pattern recognition, pp. 173–180. Springer, London (2010). doi:10.1007/978-1-84800-330-9_9
Negi, A., Bhagvati, C., Krishna, B.: An OCR system for Telugu. In: ICDAR, pp. 1110–1114. IEEE Computer Society (2001)
Rabiner, L.: A tutorial on hidden Markov models and selected applications in speech recognition. Proc. IEEE 77(2), 257–286 (1989)
Rasagna, V., Jinesh, K.J., Jawahar, C.V.: On multifont character classification in Telugu. In: Singh, C., Singh Lehal, G., Sengupta, J., Sharma, D.V., Goyal, V. (eds.) ICISIL 2011. CCIS, vol. 139, pp. 86–91. Springer, Heidelberg (2011). doi:10.1007/978-3-642-19403-0_14
Roy, P., Roy, S., Pal, U.: Multi-oriented text recognition in graphical documents using HMM. In: 2014 11th IAPR International Workshop on Document Analysis Systems (DAS), pp. 136–140, April 2014
Vasantha Lakshmi, C., Patvardhan, C.: A multi-font OCR system for printed Telugu text. In: 2002 Proceedings of Language Engineering Conference, pp. 7–17, December 2002
Wu, Y., Shivakumara, P., Wei, W., Lu, T., Pal, U.: A new ring radius transform-based thinning method for multi-oriented video characters. IJDAR 18(2), 137–151 (2015)
Young, S., Evermann, G., Gales, M., Hain, T., Kershaw, D., Liu, X.A., Moore, G., Odell, J., Ollason, D., Povey, D., Valtchev, V., Woodland, P.: The HTK Book (for HTK Version 3.4). Cambridge University Engineering Department (2006)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Devarapalli, K.R., Negi, A. (2017). Multi-font Telugu Text Recognition Using Hidden Markov Models and Akshara Bi-grams. In: Mukherjee, S., et al. Computer Vision, Graphics, and Image Processing. ICVGIP 2016. Lecture Notes in Computer Science(), vol 10481. Springer, Cham. https://doi.org/10.1007/978-3-319-68124-5_21
Download citation
DOI: https://doi.org/10.1007/978-3-319-68124-5_21
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-68123-8
Online ISBN: 978-3-319-68124-5
eBook Packages: Computer ScienceComputer Science (R0)