Abstract
Dashcams are small, dashboard mounted camera systems that continuously monitor the area around a vehicle and record video images on a portable storage device. According to many data protection authorities, dashcams constitute surveillance systems that are operated by private individuals in public places. By continuously acquiring personal data they interfere disproportionately with the right of informational self-determination. One approach to make dashcams compliant to data protection law is to automatically identify personal information – at least pedestrian’s faces and license plates – in the captured video image and subsequently disguise them. Even though appropriate anonymization methods exist, high computational costs prevent their use in portable dashcams. This article presents a new approach that enforces the anonymization of encrypted dashcam videos on a dedicated computer system, before the user gets access to the videos. To accomplish this, classified images are safeguarded by usage control techniques on the way from the camera to the anonymization component. By applying the developed system, any existing dashcam can ultimately be enhanced by privacy protection capabilities.
Similar content being viewed by others
Notes
- 1.
See Bretthauer/Krempel/Birnstill, CR 2015, 239 (242) [3].
- 2.
E. g. § 6 b BDSG, § 50 a ff. ÖDSG, §§ 16 ff. Data Protection Act, Lithuania, § 26 Act on Processing of Personal Data, Denmark, § 6 Data Protection Act, Liechtenstein, §§ 36 ff. Personal Data Act, Norway.
- 3.
See Bretthauer/Krempel, in: Schweighofer/Kummer/Htzendorfer (ed.), Transparenz – Tagungsband des 17. Internationalen Rechtsinformatik Symposions, 2014, S. 525, 532 [2]; on the requirements laid down in Art. 52 of the Charter of Fundamental Rights of the EU see Rieckhoff, Der Vorbehalt des Gesetzes im Europarecht, 2007, p. 155 ff [13].
- 4.
E. g. Ernst, CR 2015, 620 (623) [6].
- 5.
References
Birnstill, P., Ren, D., Beyerer, J.: A user study on anonymization techniques for smart video surveillance. In: 2015 12th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), pp. 1–6. IEEE (2015)
Bretthauer, S., Krempel, E.: Videomonitoring zur sturzdetektion und alarmierung - eine technische und rechtliche analyse. In: Schweighofer, E., Kummer, F., Htzendorfer, W. (eds.) Transparenz - Tagungsband des 17. Internationalen Rechtsinformatik Symposions. pp. 525–534 (2014)
Bretthauer, S., Krempel, E., Birnstill, P.: Intelligente videoberwachnug in kranken- und pflegeeinrichtungen von morgen. Computer und Recht pp. 239–245 (2015)
Dufaux, F.: Video scrambling for privacy protection in video surveillance: recent results and validation framework. In: Proceeding of SPIE, vol. 8063, pp. 806302–806302-14 (2011). https://dx.doi.org/10.1117/12.883948
Dufaux, F., Ebrahimi, T.: Region-based transform-domain video scrambling. In: Proceeding of SPIE, vol. 6077, pp. 60771U–60771U-9 (2006). https://dx.doi.org/10.1117/12.643048
Ernst, S.: Zur un-zulssigkeit von dashcams. Computer und Recht pp. 620–624 (2015)
Harvan, M., Pretschner, A.: State-based usage control enforcement with data flow tracking using system call interposition. In: 2009 Third International Conference on Network and System Security, NSS 2009, pp. 373–380. IEEE (2009)
Hosang, J., Omran, M., Benenson, R., Schiele, B.: Taking a deeper look at pedestrians. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 4073–4082 (2015)
Janard, K., Marurngsith, W.: Accelerating real-time face detection on a raspberry pi telepresence robot. In: Proceedings of the Fifth International Conference on Innovative Computing Technology, INTECH 2015, pp. 136–141 (May 2015)
Korshunov, P., Ebrahimi, T.: Using warping for privacy protection in video surveillance. In: 2013 18th International Conference on Digital Signal Processing (DSP), pp. 1–6 (July 2013)
Park, J., Sandhu, R.: Towards usage control models: Beyond traditional access control. In: Proceedings of 7th ACM Symposium on Access Control Models and Technologies (2002)
Pretschner, A., Hilty, M., Basin, D.A.: Distributed usage control. Commun. ACM 49(9), 39–44 (2006). doi:10.1145/1151053
Rieckhoff, H.: Der Vorbehalt des Gesetzes im Europarecht. Mohr Siebeck, Tbingen (2007)
Rinner, B., Winkler, T.: Privacy-protecting smart cameras. In: Proceedings of the International Conference on Distributed Smart Cameras, ICDSC 2014, pp. 40:1–40:5, NY, USA. ACM, New York (2014)
Tian, Y., Luo, P., Wang, X., Tang, X.: Pedestrian detection aided by deep learning semantic tasks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5079–5087 (2015)
Wagner, P.G., Birnstill, P., Krempel, E., Bretthauer, S., Beyerer, J.: Privacy-dashcam - datenschutzfreundliche dashcams durch erzwingen externer anonymisierung. In: Informatik 2016, 46. Jahrestagung der Gesellschaft für Informatik, 26.-30. Klagenfurt, Österreich. pp. 427–440 (2016). http://subs.emis.de/LNI/Proceedings/Proceedings259/article44.html
Zhang, S., Benenson, R., Omran, M., Hosang, J., Schiele, B.: How far are we from solving pedestrian detection? In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1259–1267 (2016)
Zhang, S., Benenson, R., Schiele, B.: Filtered channel features for pedestrian detection. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1751–1760. IEEE (2015)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Wagner, P., Birnstill, P., Krempel, E., Bretthauer, S., Beyerer, J. (2017). Privacy Dashcam – Towards Lawful Use of Dashcams Through Enforcement of External Anonymization. In: Garcia-Alfaro, J., Navarro-Arribas, G., Hartenstein, H., Herrera-Joancomartí, J. (eds) Data Privacy Management, Cryptocurrencies and Blockchain Technology. DPM CBT 2017 2017. Lecture Notes in Computer Science(), vol 10436. Springer, Cham. https://doi.org/10.1007/978-3-319-67816-0_11
Download citation
DOI: https://doi.org/10.1007/978-3-319-67816-0_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-67815-3
Online ISBN: 978-3-319-67816-0
eBook Packages: Computer ScienceComputer Science (R0)