Nothing Special   »   [go: up one dir, main page]

Skip to main content

Tuning and Evolving Support Vector Machine Models

  • Conference paper
  • First Online:
Man-Machine Interactions 5 (ICMMI 2017)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 659))

Included in the following conference series:

  • 1186 Accesses

Abstract

Support vector machines (SVMs) are a well-established classifier, already applied in a variety of pattern recognition tasks. However, they suffer from several drawbacks—selecting their appropriate hyper-parameter values (the SVM model) along with the training sets being the most important. In this paper, we study the influence of applying various kernel functions in SVMs. We verify not only the classification performance of the classifier, but also the number of selected support vectors and the training time for each kernel. Also, we perform the qualitative analysis of the retrieved support vectors using an artificially generated dataset. Finally, we show how to optimize the SVM models using a genetic algorithm. An extensive experimental study revealed that evolved SVM models provide high-quality classification and are retrieved in much shorter time compared with the trial-and-error approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    They are available at sun.aei.polsl.pl/~jnalepa/SVM.

References

  1. Alamdar, F., Ghane, S., Amiri, A.: On-line twin independent support vector machines. Neurocomputing 186, 8–21 (2016)

    Article  Google Scholar 

  2. Ali, S., Smith-Miles, K.A.: A meta-learning approach to automatic kernel selection for support vector machines. Neurocomputing 70(1–3), 173–186 (2006)

    Article  Google Scholar 

  3. Boser, B.E., Guyon, I.M., Vapnik, V.N.: A training algorithm for optimal margin classifiers. In: COLT 1992, Pittsburgh, PA, USA, pp. 144–152 (1992)

    Google Scholar 

  4. Chou, J.S., Cheng, M.Y., Wu, Y.W., Pham, A.D.: Optimizing parameters of support vector machine using fast messy genetic algorithm for dispute classification. Expert Syst. Appl. 41(8), 3955–3964 (2014)

    Article  Google Scholar 

  5. Devos, O., Downey, G., Duponchel, L.: Simultaneous data pre-processing and SVM classification model selection based on a parallel genetic algorithm applied to spectroscopic data of olive oils. Food Chem. 148, 124–130 (2014)

    Article  Google Scholar 

  6. Elangovan, M., Sugumaran, V., Ramachandran, K., Ravikumar, S.: Effect of SVM kernels on classification of vibration signals of a single point cutting tool. Expert Syst. Appl. 38(12), 15202–15207 (2011)

    Article  Google Scholar 

  7. Friedrichs, F., Igel, C.: Evolutionary tuning of multiple SVM parameters. Neurocomputing 64, 107–117 (2005)

    Article  Google Scholar 

  8. Jebara, T.: Multi-task feature and kernel selection for SVMs. In: ICML 2004, Banff, Alberta, Canada, pp. 55–63 (2004)

    Google Scholar 

  9. Kapp, M.N., Sabourin, R., Maupin, P.: A dynamic model selection strategy for support vector machine classifiers. Appl. Soft Comput. 12(8), 2550–2565 (2012)

    Article  Google Scholar 

  10. Kawulok, M., Nalepa, J., Dudzik, W.: An alternating genetic algorithm for selecting SVM model and training set. In: Carrasco-Ochoa, J., et al. (eds.) Pattern Recognition. LNCS, vol. 10267, pp. 94–104. Springer, Cham (2017)

    Google Scholar 

  11. Khemchandani, R., Jayadeva, Chandra, S.: Optimal kernel selection in twin support vector machines. Optim. Lett. 3(1), 77–88 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Lebrun, G., Charrier, C., Lezoray, O., Cardot, H.: Tabu search model selection for SVM. Int. J. Neural Syst. 18(01), 19–31 (2008)

    Article  Google Scholar 

  13. Lessmann, S., Stahlbock, R., Crone, S.F.: Genetic algorithms for support vector machine model selection. In: IEEE IJCNN 2006, Vancouver, Canada, pp. 3063–3069 (2006)

    Google Scholar 

  14. Luxburg, U.v., Bousquet, O., Schülkopf, B.: A compression approach to support vector model selection. J. Mach. Learn. Res. 5, 293–323 (2004)

    Google Scholar 

  15. Nalepa, J.: Genetic and memetic algorithms for selection of training sets for support vector machines. Ph.D. thesis, Silesian University of Technology, Poland (2016)

    Google Scholar 

  16. Nalepa, J., Czech, Z.J.: New selection schemes in a memetic algorithm for the vehicle routing problem with time windows. In: Tomassini, M., Antonioni, A., Daolio, F., Buesser, P. (eds.) Adaptive and Natural Computing Algorithms. LNCS, vol. 7824, pp. 396–405. Springer, Heidelberg (2013)

    Google Scholar 

  17. Nalepa, J., Kawulok, M.: Adaptive memetic algorithm enhanced with data geometry analysis to select training data for SVMs. Neurocomputing 185, 113–132 (2016)

    Article  Google Scholar 

  18. Nalepa, J., Siminski, K., Kawulok, M.: Towards parameter-less support vector machines. In: ACPR 2015, Kuala Lumpur, Malaysia, pp. 211–215 (2015)

    Google Scholar 

  19. Phung, S., Bouzerdoum, A., Chai, D.: Skin segmentation using color pixel classification: analysis and comparison. IEEE Trans. Pattern Anal. Mach. Intell. 27(1), 148–154 (2005)

    Article  Google Scholar 

  20. Ripepi, G., Clematis, A., DAgostino, D.: A hybrid parallel implementation of model selection for SVMs. In: PDP 2015, Turku, Finland, pp. 145–149 (2015)

    Google Scholar 

  21. Rodriguez-Lujan, I., Cruz, C.S., Huerta, R.: Hierarchical linear support vector machine. Pattern Recogn. 45(12), 4414–4427 (2012)

    Article  MATH  Google Scholar 

  22. Simiński, K.: Neuro-fuzzy system based kernel for classification with support vector machines. In: Gruca, A., Czachórski, T., Kozielski, S. (eds.) Man-Machine Interactions 3. AISC, vol. 242, pp. 415–422. Springer, Switzerland (2014)

    Google Scholar 

  23. Sullivan, K.M., Luke, S.: Evolving kernels for support vector machine classification. In: GECCO 2007, London, England, pp. 1702–1707 (2007)

    Google Scholar 

  24. Tang, Y., Guo, W., Gao, J.: Efficient model selection for support vector machine with Gaussian kernel function. In: CIDM 2009, Nashville, TN, USA, pp. 40–45 (2009)

    Google Scholar 

  25. Wang, D., Qiao, H., Zhang, B., Wang, M.: Online support vector machine based on convex hull vertices selection. IEEE Trans. Neural Netw. Learn. Syst. 24(4), 593–609 (2013)

    Article  Google Scholar 

  26. Zhang, X., Song, Q.: A multi-label learning based kernel automatic recommendation method for support vector machine. PLoS One 10, e0120455 (2015)

    Article  Google Scholar 

  27. Zhou, X., Xu, J.: A SVM model selection method based on hybrid genetic algorithm and empirical error minimization criterion. In: Wang, H., Shen, Y., Huang, T., Zeng, Z. (eds.) The Sixth International Symposium on Neural Networks. AISC, vol. 56, pp. 245–253. Springer, Heidelberg (2009)

    Google Scholar 

Download references

Acknowledgements

This research was supported by the Polish National Centre for Research and Development under the Innomed Research and Development Grant No. POIR.01.02.00-00-0030/15, and by the Institute of Informatics (Silesian University of Technology) research grant no. BKM-507/RAU2/2016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jakub Nalepa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Nalepa, J., Kawulok, M., Dudzik, W. (2018). Tuning and Evolving Support Vector Machine Models. In: Gruca, A., Czachórski, T., Harezlak, K., Kozielski, S., Piotrowska, A. (eds) Man-Machine Interactions 5. ICMMI 2017. Advances in Intelligent Systems and Computing, vol 659. Springer, Cham. https://doi.org/10.1007/978-3-319-67792-7_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67792-7_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67791-0

  • Online ISBN: 978-3-319-67792-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics