Nothing Special   »   [go: up one dir, main page]

Skip to main content

Early Detection of Fire Hazard Using Fuzzy Inference System

  • Conference paper
  • First Online:
Man-Machine Interactions 5 (ICMMI 2017)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 659))

Included in the following conference series:

  • 1187 Accesses

Abstract

Fast detection of fire allows to protect human’s health and life as well as avoid loss of property. Most fire sensors have simple construction, consisting of one or two sensing elements (usually detecting smoke and temperature) and an uncomplicated algorithm. This paper presents an idea of using fuzzy inference for early fire detection based on simultaneous analysis of data from multiple sensors. The measurement system includes a head with two accurate sensors: electrochemical carbon monoxide sensor and resistance temperature sensor. The implemented fuzzy inference algorithm accepts as inputs the values measured by the sensors, signal rise rate and signal variability. The main goal of the system is to early detect fire hazard or sensors malfunction. A series of experiments and detailed analysis of results were performed. It has been proved that fuzzy inference is suitable to the presented application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arrue, B.C., Ollero, A., De Dios, J.M.: An intelligent system for false alarm reduction in infrared forest-fire detection. IEEE Intell. Syst. Appl. 15(3), 64–73 (2000)

    Article  Google Scholar 

  2. BSI: BS EN 50545–1: 2011+A1: 2016 Electrical apparatus for the detection and measurement of toxic and combustible gases in car parks and tunnels (2011)

    Google Scholar 

  3. EMAG: Carbon Monoxide stationary analyser (2017). http://www.emagserwis.pl/

  4. Festag, S.: False alarm ratio of fire detection and fire alarm systems in Germany–a meta analysis. Fire Saf. J. 79, 119–126 (2016)

    Article  Google Scholar 

  5. Fischer, A.: Performance studies of multi sensor fire detection algorithms by modelling of fire signals. EUSAS Newsl. 5, 27–47 (1994)

    Google Scholar 

  6. Grychowski, T.: Multi sensor fire hazard monitoring in underground coal mine based on fuzzy inference system. J. Intell. Fuzzy Syst. 26(1), 345–351 (2014)

    Google Scholar 

  7. Jiang, L., Jin, J.X., Wang, Y.X.: Multi-sensor fireproof alarm system. In: ASEMD 2011, Sydney, Australia, pp. 248–251(2011)

    Google Scholar 

  8. Khanna, V., Cheema, R.K.: Fire detection mechanism using fuzzy logic. Int. J. Comput. Appl. 65(12), 82–97 (2013)

    Google Scholar 

  9. Kuo, H.C., Chang, H.: A real-time shipboard fire-detection system based on grey-fuzzy algorithms. Fire Saf. J. 38(4), 341–363 (2003)

    Article  Google Scholar 

  10. Lucian, G.: Fuzzy Controllers, Theory and Applications. InTech, West Palm Beach (2011)

    Google Scholar 

  11. Ma, X.M.: Application of data fusion theory in coal gas fire prediction system. In: ICICTA 2008, Hunan, China, vol. 1, pp. 572–575 (2008)

    Google Scholar 

  12. Mamdani, E.H.: Application of fuzzy algorithms for control of simple dynamic plant. Proc. Inst. Electr. Eng. 121(12), 1585–1588 (1974)

    Article  Google Scholar 

  13. Meacham, B.J.: The use of artificial intelligence techniques for signal discrimination in fire detection systems. J. Fire Prot. Eng. 6(3), 125–136 (1994)

    Article  Google Scholar 

  14. Gospodarki, M.: Rozporza̧dzenie z dnia 28 czerwca 2002 r. w sprawie bezpieczeństwa i higieny pracy, prowadzenia ruchu oraz specjalistycznego zabezpieczenia przeciwpożarowego w podziemnych zakładach górniczych (Dz.U. nr 139, poz. 1169, z 2006r.) (2002)

    Google Scholar 

  15. Muller, H., Fischer, A.: A robust fire detection algorithm for temperature and optical smoke density using fuzzy logic. In: ICCST 1995, St. Andrews, Scotland, pp. 197–204 (1995)

    Google Scholar 

  16. Muralidharan, A., Joseph, F.: Fire detection system using fuzzy logic. Int. J. Eng. Sci. Res. Technol. 3(4), 6041–6044 (2014)

    Google Scholar 

  17. National Instruments: Graphical Development Environment LabVIEW 2016 (2016)

    Google Scholar 

  18. Pepperl+Fuchs: RPI K-System

    Google Scholar 

  19. Pepperl+Fuchs: Universal Temperature Converter KSD2-TI (2017)

    Google Scholar 

  20. Piegat, A.: Modelowanie i sterowanie rozmyte. Akademicka Oficyna Wydawnicza “Exit” (1999)

    Google Scholar 

  21. Ponce-Cruz, P., Ramírez-Figueroa, F.D.: Intelligent Control Systems with LabVIEWTM. Springer Science & Business Media, Heidelberg (2009)

    Google Scholar 

  22. Ristić, J.D., Radosavljević, D.B.: Decision algorithms in fire detection systems. Serb. J. Electr. Eng. 8(2), 155–161 (2011)

    Article  Google Scholar 

  23. Ross, T.J.: Fuzzy Logic With Engineering Applications. Wiley, Hoboken (2009)

    Google Scholar 

  24. Siemens: AlgoRex DOT1151A-Ex - interactive-neural Ex fire detection, fuzzy logic and neural network in the detector (2015)

    Google Scholar 

  25. Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomasz Grychowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Grychowski, T., Jabłoński, K. (2018). Early Detection of Fire Hazard Using Fuzzy Inference System. In: Gruca, A., Czachórski, T., Harezlak, K., Kozielski, S., Piotrowska, A. (eds) Man-Machine Interactions 5. ICMMI 2017. Advances in Intelligent Systems and Computing, vol 659. Springer, Cham. https://doi.org/10.1007/978-3-319-67792-7_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67792-7_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67791-0

  • Online ISBN: 978-3-319-67792-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics