Abstract
Fast detection of fire allows to protect human’s health and life as well as avoid loss of property. Most fire sensors have simple construction, consisting of one or two sensing elements (usually detecting smoke and temperature) and an uncomplicated algorithm. This paper presents an idea of using fuzzy inference for early fire detection based on simultaneous analysis of data from multiple sensors. The measurement system includes a head with two accurate sensors: electrochemical carbon monoxide sensor and resistance temperature sensor. The implemented fuzzy inference algorithm accepts as inputs the values measured by the sensors, signal rise rate and signal variability. The main goal of the system is to early detect fire hazard or sensors malfunction. A series of experiments and detailed analysis of results were performed. It has been proved that fuzzy inference is suitable to the presented application.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Arrue, B.C., Ollero, A., De Dios, J.M.: An intelligent system for false alarm reduction in infrared forest-fire detection. IEEE Intell. Syst. Appl. 15(3), 64–73 (2000)
BSI: BS EN 50545–1: 2011+A1: 2016 Electrical apparatus for the detection and measurement of toxic and combustible gases in car parks and tunnels (2011)
EMAG: Carbon Monoxide stationary analyser (2017). http://www.emagserwis.pl/
Festag, S.: False alarm ratio of fire detection and fire alarm systems in Germany–a meta analysis. Fire Saf. J. 79, 119–126 (2016)
Fischer, A.: Performance studies of multi sensor fire detection algorithms by modelling of fire signals. EUSAS Newsl. 5, 27–47 (1994)
Grychowski, T.: Multi sensor fire hazard monitoring in underground coal mine based on fuzzy inference system. J. Intell. Fuzzy Syst. 26(1), 345–351 (2014)
Jiang, L., Jin, J.X., Wang, Y.X.: Multi-sensor fireproof alarm system. In: ASEMD 2011, Sydney, Australia, pp. 248–251(2011)
Khanna, V., Cheema, R.K.: Fire detection mechanism using fuzzy logic. Int. J. Comput. Appl. 65(12), 82–97 (2013)
Kuo, H.C., Chang, H.: A real-time shipboard fire-detection system based on grey-fuzzy algorithms. Fire Saf. J. 38(4), 341–363 (2003)
Lucian, G.: Fuzzy Controllers, Theory and Applications. InTech, West Palm Beach (2011)
Ma, X.M.: Application of data fusion theory in coal gas fire prediction system. In: ICICTA 2008, Hunan, China, vol. 1, pp. 572–575 (2008)
Mamdani, E.H.: Application of fuzzy algorithms for control of simple dynamic plant. Proc. Inst. Electr. Eng. 121(12), 1585–1588 (1974)
Meacham, B.J.: The use of artificial intelligence techniques for signal discrimination in fire detection systems. J. Fire Prot. Eng. 6(3), 125–136 (1994)
Gospodarki, M.: Rozporza̧dzenie z dnia 28 czerwca 2002 r. w sprawie bezpieczeństwa i higieny pracy, prowadzenia ruchu oraz specjalistycznego zabezpieczenia przeciwpożarowego w podziemnych zakładach górniczych (Dz.U. nr 139, poz. 1169, z 2006r.) (2002)
Muller, H., Fischer, A.: A robust fire detection algorithm for temperature and optical smoke density using fuzzy logic. In: ICCST 1995, St. Andrews, Scotland, pp. 197–204 (1995)
Muralidharan, A., Joseph, F.: Fire detection system using fuzzy logic. Int. J. Eng. Sci. Res. Technol. 3(4), 6041–6044 (2014)
National Instruments: Graphical Development Environment LabVIEW 2016 (2016)
Pepperl+Fuchs: RPI K-System
Pepperl+Fuchs: Universal Temperature Converter KSD2-TI (2017)
Piegat, A.: Modelowanie i sterowanie rozmyte. Akademicka Oficyna Wydawnicza “Exit” (1999)
Ponce-Cruz, P., Ramírez-Figueroa, F.D.: Intelligent Control Systems with LabVIEWTM. Springer Science & Business Media, Heidelberg (2009)
Ristić, J.D., Radosavljević, D.B.: Decision algorithms in fire detection systems. Serb. J. Electr. Eng. 8(2), 155–161 (2011)
Ross, T.J.: Fuzzy Logic With Engineering Applications. Wiley, Hoboken (2009)
Siemens: AlgoRex DOT1151A-Ex - interactive-neural Ex fire detection, fuzzy logic and neural network in the detector (2015)
Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG
About this paper
Cite this paper
Grychowski, T., Jabłoński, K. (2018). Early Detection of Fire Hazard Using Fuzzy Inference System. In: Gruca, A., Czachórski, T., Harezlak, K., Kozielski, S., Piotrowska, A. (eds) Man-Machine Interactions 5. ICMMI 2017. Advances in Intelligent Systems and Computing, vol 659. Springer, Cham. https://doi.org/10.1007/978-3-319-67792-7_27
Download citation
DOI: https://doi.org/10.1007/978-3-319-67792-7_27
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-67791-0
Online ISBN: 978-3-319-67792-7
eBook Packages: EngineeringEngineering (R0)