Abstract
The quality of the time travel prediction is a key factor in the transport of people and goods. This prediction is used in different facets related to management and planning of the transport activity, having special influence in the service quality in public transport. In this paper a methodology to analyse the factors which affect to travel time prediction in routes of road public transport is presented. This methodology uses vehicles GPS data to identify the causes of the travel time variability, georeferencing these causes. The infrastructure elements required, data used and the processing techniques are explained. The methodology was applied to analyse the travel time of a line of a public transport company, presenting the results of this test.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Zhang, J., Wang, F., Wang, K., Lin, W., Xu, X., Chen, Ch.: Data-driven intelligent transportation systems: a survey. IEEE Trans. Intell. Transp. Syst. 4, 1624–1639 (2011). doi:10.1109/TITS.2011.2158001
European Commission. http://europa.eu/rapid/press-release_IP-13-236_en.htm. Accessed 1 May 2017
Peek, G., van Hagen, M.: Creating synergy in and around stations: three strategies for adding value. J. Transp. Res. Board 1793, 1–6 (2002). doi:10.3141/1793-01
Khosravi, A., Mazloumi, E., Nahavandi, S., Creighton, D., Van Lint, J.: Prediction intervals to account for uncertainties in travel time prediction. IEEE Trans. Intell. Transp. Syst. 12, 537–547 (2011). doi:10.1109/TITS.2011.2106209
Zaki, M., Ashour, I., Zorkany, M., Hesham, B.: Online bus arrival time prediction using hybrid neural network and Kalman filter techniques. Int. J. Mod. Eng. Res. 3(4), 2035–2041 (2013)
Baptista, A., Bouillet, E., Pompey, P.: Towards an uncertainty aware short-term travel time prediction using GPS bus data: Case study in Dublin. In: Proceedings 15th Int. IEEE ITSC, pp. 1620–1625. doi:10.1109/ITSC.2012.6338633 (2012)
Lin, W., Bertini, R.: Modeling schedule recovery processes in transit operations for bus arrival time prediction. J. Adv. Transp. 38, 347–365 (2004). doi:10.1109/ITSC.2002.1041332
Shalaby, A., Farhan, A.: Bus travel time prediction model for dynamic operations control and passenger information systems. In: TRB 82nd Annual Meeting (2003)
Dong, J., Zou, L., Zhang, Y.: Mixed model for prediction of bus arrival times. In: Proceedings 2013 IEEE Congress on Evolutionary Computation (CEC), pp. 2918–2923. doi:10.1109/CEC.2013.6557924 (2013)
Mendes-Moreira, J., Jorge, A., de Sousa, J., Soares, C.: Comparing state-of-the-art regression methods for long term travel time prediction. Intell. Data Anal. 16, 427–449 (2012). doi:10.3233/IDA-2012-0532
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Cristóbal, T., Padrón, G., Quesada-Arencibia, A., Alayón, F., García, C.R. (2017). Methodology for Analyzing the Travel Time Variability in Public Road Transport. In: Ochoa, S., Singh, P., Bravo, J. (eds) Ubiquitous Computing and Ambient Intelligence. UCAmI 2017. Lecture Notes in Computer Science(), vol 10586. Springer, Cham. https://doi.org/10.1007/978-3-319-67585-5_5
Download citation
DOI: https://doi.org/10.1007/978-3-319-67585-5_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-67584-8
Online ISBN: 978-3-319-67585-5
eBook Packages: Computer ScienceComputer Science (R0)