Nothing Special   »   [go: up one dir, main page]

Skip to main content

Tip-Toe Walking Detection Using CPG Parameters from Skeleton Data Gathered by Kinect

  • Conference paper
  • First Online:
Ubiquitous Computing and Ambient Intelligence (UCAmI 2017)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10586))

Abstract

Distinguishing tip-toe walking from normal walking, in human locomotion patterns, becomes important in applications such as Autism disorder identification. In this paper, we propose a novel approach for tip-toe walking detection based on the walk’s Central Pattern Generator (CPG) parameters. In the proposed approach, the tip-toe walking is modeled by a CPG. Then, the motions of subjects are recorded and skeleton data are extracted using the first-generation Microsoft Kinect sensor. The CPG parameters of these motions are determined and compared to the given patterns to distinguish between tip-toe walking and normal walking. The accuracy of classification is promising while further data will improve the accuracy rate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Pantic, M., Pentland, A., Nijholt, A., Huang, T.S.: Human computing and machine understanding of human behavior: a survey. In: Huang, T.S., Nijholt, A., Pantic, M., Pentland, A. (eds.) Artifical Intelligence for Human Computing. LNCS, vol. 4451, pp. 47–71. Springer, Heidelberg (2007). doi:10.1007/978-3-540-72348-6_3

    Chapter  Google Scholar 

  2. Brdiczka, O., Langet, M., Maisonnasse, J., Crowley, J.L.: Detecting human behavior models from multimodal observation in a smart home. IEEE Trans. Autom. Sci. Eng. 6, 588–597 (2009)

    Article  Google Scholar 

  3. Pentland, A.: Looking at people: sensing for ubiquitous and wearable computing. IEEE Trans. Pattern Anal. Mach. Intell. 22, 107–119 (2000)

    Article  Google Scholar 

  4. Sung, J., Ponce, C., Selman, B., Saxena, A.: Human activity detection from RGBD images. In: IEEE International Conference on Robotics and Automation, pp. 842–849 (2011)

    Google Scholar 

  5. Zhang, C., Tian, Y.: RGB-D camera-based daily living activity recognition. J. Comput. Vis. Image Process. 2, 12 (2012)

    Article  Google Scholar 

  6. Yang, X., Tian, Y.: Effective 3D action recognition using Eigenjoints. J. Vis. Commun. Image Represent. 25, 2–11 (2014)

    Article  Google Scholar 

  7. Steele, R., Lo, A., Secombe, C., Wong, Y.K.: Elderly persons’ perception and acceptance of using wireless sensor networks to assist healthcare. Int. J. Med. Inform. 78, 788–801 (2009)

    Article  Google Scholar 

  8. Atzori, L., Iera, A., Morabito, G.: The internet of things: a survey. Comput. Netw. 54, 2787–2805 (2010)

    Article  MATH  Google Scholar 

  9. León, O., Hernández-Serrano, J., Soriano, M.: Internet of things. Int. J. Commun. Syst. 23, 633–652 (2010)

    Google Scholar 

  10. Weber, R.H., Weber, R.: Internet of Things. Springer, Heidelberg (2010). doi:10.1007/978-3-642-11710-7

    Book  Google Scholar 

  11. Zhang, Z.: Microsoft kinect sensor and its effect. IEEE Multimed. 19, 4–10 (2012)

    Article  Google Scholar 

  12. Bell, C.C.: DSM-IV: diagnostic and statistical manual of mental disorders. JAMA 272, 828–829 (1994)

    Article  Google Scholar 

  13. Zhang, H., Parker, L.E.: 4-Dimensional local spatio-temporal features for human activity recognition. In: IEEE International Conference on Intelligent Robots and Systems (IROS), pp. 2044–2049 (2011)

    Google Scholar 

  14. Popa, M., Kemal Koc, A., Rothkrantz, L.J.M., Shan, C., Wiggers, P.: Kinect sensing of shopping related actions. In: Wichert, R., Van Laerhoven, K., Gelissen, J. (eds.) AmI 2011. CCIS, vol. 277, pp. 91–100. Springer, Heidelberg (2012). doi:10.1007/978-3-642-31479-7_16

    Chapter  Google Scholar 

  15. Ebrahimi, M., Feghi, M., Moradi, H., Mirian, M., Pouretemad, H.: Distinguishing tip-toe walking from normal walking using skeleton data gathered by 3D sensors, pp. 1–6 (2015)

    Google Scholar 

  16. Bucher, D., Haspel, G., Golowasch, J., Nadim, F., Bucher, D., Haspel, G., Golowasch, J., Nadim, F.: Central pattern generators. Encyclopedia of Life Sciences, pp. 1–12. Wiley, Chichester, UK (2015)

    Google Scholar 

  17. Grillner, S., Wallen, P.: Central pattern generators for locomotion, with special reference to vertebrates. Annu. Rev. Neurosci (2003). doi:10.1146/annurev.ne.08.030185.001313

    Google Scholar 

  18. Ijspeert, A.J.: Central pattern generators for locomotion control in animals and robots: a review. Neural Netw. 21, 642–653 (2008)

    Article  Google Scholar 

  19. Righetti, L., Ijspeert, A.J.: Pattern generators with sensory feedback for the control of quadruped locomotion. In: Proceedings - IEEE International Conference on Robotics and Automation, pp. 819–824 (2008)

    Google Scholar 

  20. Righetti, L., Ijspeert, A.J.: Programmable central pattern generators: an application to biped locomotion control. In: Proceedings IEEE ICRA, pp. 1585–1590 (2006)

    Google Scholar 

Download references

Acknowledgments

This research is partially funded by Cognitive Sciences and Technologies Council (COGC) of Iran. Special thanks to Dr. Babak Nadjar Araabi and Dr. Hamid Reza Pour Etemad and Centre for the Treatment of Autistic Disorders (CTAD) for their help. We want to thank all members of Advanced Robotics and Intelligent Systems (ARIS) Lab for their generous help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hadi Moradi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Taban, R., Parsa, A., Moradi, H. (2017). Tip-Toe Walking Detection Using CPG Parameters from Skeleton Data Gathered by Kinect. In: Ochoa, S., Singh, P., Bravo, J. (eds) Ubiquitous Computing and Ambient Intelligence. UCAmI 2017. Lecture Notes in Computer Science(), vol 10586. Springer, Cham. https://doi.org/10.1007/978-3-319-67585-5_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67585-5_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67584-8

  • Online ISBN: 978-3-319-67585-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics