Nothing Special   »   [go: up one dir, main page]

Skip to main content

W-Net for Whole-Body Bone Lesion Detection on \(^{68}\)Ga-Pentixafor PET/CT Imaging of Multiple Myeloma Patients

  • Conference paper
  • First Online:
Molecular Imaging, Reconstruction and Analysis of Moving Body Organs, and Stroke Imaging and Treatment (RAMBO 2017, CMMI 2017, SWITCH 2017)

Abstract

The assessment of bone lesion is crucial for the diagnostic and therapeutic planning of multiple myeloma (MM). \(^{68}\)Ga-Pentixafor PET/CT can capture the abnormal molecular expression of CXCR-4 in addition to anatomical changes. However, the whole-body detection of dozens of lesions on hybrid imaging is tedious and error-prone. In this paper, we adopt a cascaded convolutional neural networks (CNN) to form a W-shaped architecture (W-Net). This deep learning method leverages multimodal information for lesion detection. The first part of W-Net extracts skeleton from CT scan and the second part detect and segment lesions. The network was tested on 12 \(^{68}\)Ga-Pentixafor PET/CT scans of MM patients using 3-folder cross validation. The preliminary results showed that W-Net can automatically learn features from multimodal imaging for MM bone lesion detection. The proof-of-concept study encouraged further development of deep learning approach for MM lesion detection with increased number of subjects.

L. Xu and G. Tetteh—Contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Callander, N.S., Roodman, G.D.: Myeloma bone disease, pp. 276–285. Semin Hematol Elsevier (2001)

    Google Scholar 

  2. Collins, C.D.: Problems monitoring response in multiple myeloma. Cancer Imaging 5, S119–S126 (2005)

    Article  Google Scholar 

  3. Ltje, S., de Rooy, J.W., Croockewit, S., et al.: Role of radiography, MRI and FDG-PET/CT in diagnosing, staging and therapeutical evaluation of patients with multiple myeloma. Ann. Hematol. 88, 1161–1168 (2009)

    Article  Google Scholar 

  4. Dimopoulos, M., Terpos, E., Comenzo, R., et al.: International myeloma working group consensus statement and guidelines regarding the current role of imaging techniques in the diagnosis and monitoring of multiple Myeloma. Leukemia 23, 1545–1556 (2009)

    Article  Google Scholar 

  5. Horger, M., Claussen, C.D., Bross-Bach, U., et al.: Whole-body low-dose multidetector row-CT in the diagnosis of multiple myeloma: an alternative to conventional radiography. Eur. J. Radiol. 54, 289–297 (2005)

    Article  Google Scholar 

  6. Dutoit, J.C., Verstraete, K.L.: MRI in multiple myeloma: a pictorial review of diagnostic and post-treatment findings. Insights Image 7, 553–569 (2016)

    Article  Google Scholar 

  7. Healy, C.F., Murray, J.G., Eustace, S.J., et al.: Multiple myeloma: a review of imaging features and radiological techniques. Bone Marrow Res. (2011)

    Google Scholar 

  8. van Lammeren-Venema, D., Regelink, J.C., Riphagen, I.I., et al.: 18F-fluoro-deoxyglucose positron emission tomography in assessment of myeloma-related bone disease: a systematic review. Cancer 118(8), 1971–1981 (2012)

    Article  Google Scholar 

  9. Vag, T., Gerngross, C., Herhaus, P., et al.: First experience with chemokine receptor CXCR4-targeted PET imaging of patients with solid cancers. J. Nucl. Med. 57, 741–746 (2016)

    Article  Google Scholar 

  10. Philipp-Abbrederis, K., Herrmann, K., Knop, S., et al.: In vivo molecular imaging of chemokine receptor CXCR4 expression in patients with advanced multiple myeloma. EMBO Mol. Med. (2015)

    Google Scholar 

  11. Belton, A., Saini, S., Liebermann, K., et al.: Tumour size measurement in an oncology clinical trial: comparison between off-site and on-site measurements. Clin. Radiol. 58, 311–314 (2003)

    Article  Google Scholar 

  12. Eadie, L.H., Taylor, P., Gibson, A.P.: A systematic review of computer-assisted diagnosis in diagnostic cancer imaging. Eur. J. Radiol. 81, e70–e76 (2012)

    Article  Google Scholar 

  13. Petrick, N., Sahiner, B., Armato, S.G., et al.: Evaluation of computer-aided detection and diagnosis systems. Med. Phys. 40(8) (2013)

    Google Scholar 

  14. Taylor, A.T., Garcia, E.V.: Computer-assisted diagnosis in renal nuclear medicine: rationale, methodology, and interpretative criteria for diuretic renography. Semin. Nucl. Med. 44, 146–158 (2014)

    Article  Google Scholar 

  15. Wang, S., Summers, R.M.: Machine learning and radiology. Med. Image Anal. 16, 933–951 (2012)

    Article  Google Scholar 

  16. Kourou, K., Exarchos, T.P., Exarchos, K.P., et al.: Machine learning applications in cancer prognosis and prediction. Comput. Struct. Biotechnol. J. 13, 8–17 (2015)

    Article  Google Scholar 

  17. Ju, W., Xiang, D., Zhang, B., et al.: Random walk and graph cut for co-segmentation of lung tumor on PET-CT images. IEEE Trans. Med. Imaging 24(12), 5854–5867 (2015)

    MathSciNet  Google Scholar 

  18. Martínez-Martínez, F., Kybic, J., Lambert, L., et al.: Fully automated classification of bone marrow infiltration in low-dose CT of patients with multiple myeloma based on probabilistic density model and supervised learning. Comput. Biol. Med. 71, 57–66 (2016)

    Article  Google Scholar 

  19. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). doi:10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  20. Milletari, F., Navab, N., Ahmadi, S.A.: V-net: fully convolutional neural networks for volumetric medical image segmentation. In: 3DV, pp. 565–571 (2016)

    Google Scholar 

  21. Christ, P.F., et al.: Automatic liver and lesion segmentation in CT using cascaded fully convolutional neural networks and 3D conditional random fields. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 415–423. Springer, Cham (2016). doi:10.1007/978-3-319-46723-8_48

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lina Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Xu, L. et al. (2017). W-Net for Whole-Body Bone Lesion Detection on \(^{68}\)Ga-Pentixafor PET/CT Imaging of Multiple Myeloma Patients. In: Cardoso, M., et al. Molecular Imaging, Reconstruction and Analysis of Moving Body Organs, and Stroke Imaging and Treatment. RAMBO CMMI SWITCH 2017 2017 2017. Lecture Notes in Computer Science(), vol 10555. Springer, Cham. https://doi.org/10.1007/978-3-319-67564-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67564-0_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67563-3

  • Online ISBN: 978-3-319-67564-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics