Nothing Special   »   [go: up one dir, main page]

Skip to main content

Unsupervised Detection and Analysis of Changes in Everyday Physical Activity Data

  • Chapter
  • First Online:
Advances in Biomedical Informatics

Part of the book series: Intelligent Systems Reference Library ((ISRL,volume 137))

  • 1141 Accesses

Abstract

Sensor-based time series data can be utilized to monitor changes in human behavior as a person makes a significant lifestyle change, such as progress toward a fitness goal. Recently, wearable sensors have increased in popularity as people aspire to be more conscientious of their physical health. Automatically detecting and tracking behavior changes from wearable sensor-collected physical activity data can provide a valuable monitoring and motivating tool. In this paper, we formalize the problem of unsupervised physical activity change detection and address the problem with our Physical Activity Change Detection (PACD) approach. PACD is a framework that detects changes between time periods, determines significance of the detected changes, and analyzes the nature of the changes. We compare the abilities of three change detection algorithms from the literature and one proposed algorithm to capture different types of changes as part of PACD. We illustrate and evaluate PACD on synthetic data and using Fitbit data collected from older adults who participated in a health intervention study. Results indicate PACD detects several changes in both datasets. The proposed change algorithms and analysis methods are useful data mining techniques for unsupervised, window-based change detection with potential to track users’ physical activity and motivate progress toward their health goals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Albregtsen, F., et al.: Statistical texture measures computed from gray level coocurrence matrices. Image processing laboratory, Department of informatics, university of oslo pp. 1–14. http://www.uio.no/studier/emner/matnat/ifi/INF4300/h08/undervisningsmateriale/glcm.pdf (2008)

  2. Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Series B (Methodological) 57(1):289–300. http://www.jstor.org/stable/2346101 (1995)

  3. Caspersen, C.J., Powell, K.E., Christenson, G.M.: Physical activity, exercise, and physical fitness: Definitions and distinctions for health-related research. Public Health Rep 100(2):126–131. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1424733/ (1985)

  4. Chen, L., Hoey, J., Nugent, C., Cook, D., Yu, Z.: Sensor-based activity recognition. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 42(6), 790–808 (2012). doi:10.1109/TSMCC.2012.2198883

    Article  Google Scholar 

  5. Dawadi, P.N., Cook, D.J., Schmitter-Edgecombe M.: Modeling patterns of activities using activity curves. Pervasive and Mobile Computing. doi: 10.1016/j.pmcj.2015.09.007. http://www.sciencedirect.com/science/article/pii/S157411921500173X (2015)

  6. Dobkin, B.H.: Wearable motion sensors to continuously measure real-world physical activities. Curr Opin Neurol 26(6):602–608, doi: 10.1097/WCO.0000000000000026. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4035103/ (2013)

  7. Feuz, K., Cook, D., Rosasco, C., Robertson, K., Schmitter-Edgecombe, M.: Automated Detection of Activity Transitions for Prompting. IEEE Transactions on Human-Machine Systems 45(5), 575–585 (2015). doi:10.1109/THMS.2014.2362529

    Article  Google Scholar 

  8. Grubbs, F.E.: Procedures for detecting outlying observations in samples. Technometrics 11(1):1, doi: 10.2307/1266761. http://www.jstor.org/stable/1266761?origin=crossref (1969)

  9. Hido, S., Id, T., Kashima, H., Kubo, H., Matsuzawa, H.: Unsupervised change analysis using supervised learning. In: Washio, T., Suzuki, E., Ting, K.M., Inokuchi, A. (eds.) Advances in Knowledge Discovery and Data Mining, no. 5012 in Lecture Notes in Computer Science, Springer Berlin Heidelberg, pp. 148–159. http://link.springer.com/chapter/10.1007/978-3-540-68125-0_15, doi: 10.1007/978-3-540-68125-0_15 (2008)

  10. Hodge, V.J., Austin, J.: A survey of outlier detection methodologies. Artif. Intell. Rev. 22(2):85–126, doi: 10.1007/s10462-004-4304-y. http://link.springer.com/article/10.1007/s10462-004-4304-y (2004)

  11. Hu, M., Zhou, S., Wei, J., Deng, Y., Qu, W.: Change-point detection in multivariate time-series data by recurrence plot. WSEAS Transactions on Computers 13:592–599. http://www.wseas.org/multimedia/journals/computers/2014/a305705-716.pdf (2014)

  12. Javed, F., Farrugia, S., Colefax, M., Schindhelm, K.: Early warning of acute decompensation in heart failure patients using a noncontact measure of stability index. IEEE Trans. Biomed. Eng. 63(2), 438–448 (2016). doi:10.1109/TBME.2015.2463283

    Article  Google Scholar 

  13. Lally, P., Jaarsveld, C. van, Potts, H., Wardle, J.: How are habits formed: Modelling habit formation in the real world. Eur. J. Soc. Psychol. 40(6):998–1009, doi: 10.1002/ejsp.674. http://dx.doi.org/10.1002/ejsp.674 (2010)

  14. Liu, S., Yamada, M., Collier, N., Sugiyama, M.: Change-point detection in time-series data by relative density-ratio estimation. Neural Networks 43:72–83, doi: 10.1016/j.neunet.2013.01.012. http://www.sciencedirect.com/science/article/pii/S0893608013000270 (2013)

  15. Maimon, O., Rokach, L.: Data mining and knowledge discovery handbook. Springer, New York. http://www.books24x7.com/marc.asp?bookid=16218 (2005)

  16. Merilahti, J., Petkoski-Hult, T., Ermes, M., Gils, M.v., Lahti, H., Ylinen, A., Autio, L., Hyvrinen, E., Hyttinen, J.: Evaluation of new concept for balance and gait analysis: Patients with neurological disease, elderly people and young people. Gerontechnology 7(2):164. http://www.gerontechnology.info/index.php/journal/article/viewFile/gt.2008.07.02.101.00/832 (2008)

  17. Merilahti, J., Viramo, P., Korhonen, I.: Wearable monitoring of physical functioning and disability changes, circadian rhythms and sleep patterns in nursing home residents. IEEE J. Biomed. Health Inform. PP(99):1–1, doi: 10.1109/JBHI.2015.2420680 (2015)

  18. Ng, W., Dash, M.: A change detector for mining frequent patterns over evolving data streams. IEEE International Conference on Systems, Man and Cybernetics, 2008. SMC 2008, pp. 2407–2412, doi: 10.1109/ICSMC.2008.4811655 (2008)

  19. Paavilainen, P., Korhonen, I., Ltjnen, J., Cluitmans, L., Jylh, M., Srel, A., Partinen, M.: Circadian activity rhythm in demented and non-demented nursing-home residents measured by telemetric actigraphy. J. Sleep Res. 14(1), 61–68 (2005). doi:10.1111/j.1365-2869.2004.00433.x

    Article  Google Scholar 

  20. Prince, S.A., Adamo, K.B., Hamel, M.E., Hardt, J., Gorber, S.C., Tremblay, M.: A comparison of direct versus self-report measures for assessing physical activity in adults: a systematic review. Int. J. Behav. Nutr. Phys. Act. 5:56, doi: 10.1186/1479-5868-5-56. http://dx.doi.org/10.1186/1479-5868-5-56 (2008)

  21. Refinetti, R., Lissen, G.C., Halberg, F.: Procedures for numerical analysis of circadian rhythms. Biol. Rhythm. Res. 38(4):275–325, doi: 10.1080/09291010600903692. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3663600/ (2007)

  22. Tan, T.H., Gochoo, M., Chen, K.H., Jean, F.R., Chen, Y.F., Shih, F.J., Ho, C.F.: Indoor activity monitoring system for elderly using RFID and Fitbit Flex wristband. 2014 IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI), pp. 41–44, doi: 10.1109/BHI.2014.6864299 (2014)

  23. Tran, D.H., Gaber, M.M., Sattler, K.U.: Change detection in streaming data in the era of big data: Models and issues. SIGKDD Explor Newsl 16(1):30–38, DOI 10.1145/2674026.2674031. http://doi.acm.org/10.1145/2674026.2674031 (2014)

  24. Tucker, P., Gilliland, J.: The effect of season and weather on physical activity: A systematic review. Public Health 121(12):909–922, doi: 10.1016/j.puhe.2007.04.009. http://www.sciencedirect.com/science/article/pii/S0033350607001400 (2007)

  25. Tukey, J.W.: Exploratory data analysis. http://xa.yimg.com/kq/groups/16412409/1159714453/name/exploratorydataanalysis.pdf (1977)

  26. Wang, S., Skubic, M., Zhu, Y.: Activity density map visualization and dissimilarity comparison for eldercare monitoring. IEEE Trans. Inf. Technol. Biomed. 16(4), 607–614 (2012). doi:10.1109/TITB.2012.2196439

    Article  Google Scholar 

  27. Xu, Y., Zhang, Z., Yu, P., Long, B.: Pattern change discovery between high dimensional data sets. In: Proceedings of the 20th ACM International Conference on Information and Knowledge Management, ACM, New York, NY, USA, CIKM ’11, pp. 1097–1106, DOI 10.1145/2063576.2063735. http://doi.acm.org/10.1145/2063576.2063735 (2011)

  28. Yamada, M., Kimura, A., Naya, F., Sawada, H.: Change-point detection with feature selection in high-dimensional time-series data. In: Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence, AAAI Press, Beijing, China, IJCAI ’13, pp. 1827–1833. http://dl.acm.org/citation.cfm?id=2540128.2540390 (2013)

Download references

Acknowledgements

We wish to thank the Department of Psychology at Washington State University for their insights and help with data collection. This material is based upon work supported by the National Science Foundation under Grant No. 0900781.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gina Sprint .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Sprint, G., Cook, D.J., Schmitter-Edgecombe, M. (2018). Unsupervised Detection and Analysis of Changes in Everyday Physical Activity Data. In: Holmes, D., Jain, L. (eds) Advances in Biomedical Informatics. Intelligent Systems Reference Library, vol 137. Springer, Cham. https://doi.org/10.1007/978-3-319-67513-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67513-8_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67512-1

  • Online ISBN: 978-3-319-67513-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics