Abstract
This paper addresses the problem of segmentation of proximal femur in 3D MR images. We propose a deeply supervised 3D U-net-like fully convolutional network for segmentation of proximal femur in 3D MR images. After training, our network can directly map a whole volumetric data to its volume-wise labels. Inspired by previous work, multi-level deep supervision is designed to alleviate the potential gradient vanishing problem during training. It is also used together with partial transfer learning to boost the training efficiency when only small set of labeled training data are available. The present method was validated on 20 3D MR images of femoroacetabular impingement patients. The experimental results demonstrate the efficacy of the present method.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Laborie, L., Lehmann, T., Engesæter, I., et al.: Prevalence of radiographic findings thought to be associated with femoroacetabular impingement in a population-based cohort of 2081 healthy young adults. Radiology 260, 494–502 (2011)
Leunig, M., Beaulé, P., Ganz, R.: The concept of femoroacetabular impingement: current status and future perspectives. Clin. Orthop. Relat. Res. 467, 616–622 (2009)
Clohisy, J., Knaus, E., Hunt, D.M., et al.: Clinical presentation of patients with symptomatic anterior hip impingement. Clin. Orthop. Relat. Res. 467, 638–644 (2009)
Perdikakis, E., Karachalios, T., Katonis, P., Karantanas, A.: Comparison of MR-arthrography and MDCT-arthrography for detection of labral and articular cartilage hip pathology. Skeletal Radiol. 40, 1441–1447 (2011)
Xia, Y., Fripp, J., Chandra, S., Schwarz, R., Engstrom, C., Crozier, S.: Automated bone segmentation from large field of view 3D MR images of the hip joint. Phys. Med. Biol. 21, 7375–7390 (2013)
Xia, Y., Chandra, S., Engstrom, C., Strudwick, M., Crozier, S., Fripp, J.: Automatic hip cartilage segmentation from 3D MR images using arc-weighted graph searching. Phys. Med. Biol. 59, 7245–66 (2014)
Gilles, B., Magnenat-Thalmann, N.: Musculoskeletal MRI segmentation using multi-resolution simplex meshes with medial representations. Med. Image Anal. 14, 291–302 (2010)
Arezoomand, S., Lee, W.S., Rakhra, K., Beaule, P.: A 3D active model framework for segmentation of proximal femur in MR images. Int. J. CARS 10, 55–66 (2015)
Chandra, S., Xia, Y., Engstrom, C., et al.: Focused shape models for hip joint segmentation in 3D magnetic resonance images. Med. Image Anal. 18, 567–578 (2014)
Krizhevsky, A., Sutskever, I., Hinton, G.: Imagenet classification with deep convolutional neural networks. In: Pereira, F., Burges, C.J.C., Bottou, L., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems 25, pp. 1097–1105. Curran Associates, Inc. (2012)
Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3431–3440 (2015)
Prasoon, A., Petersen, K., Igel, C., Lauze, F., Dam, E., Nielsen, M.: Deep Feature Learning for Knee Cartilage Segmentation Using a Triplanar Convolutional Neural Network. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8150, pp. 246–253. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40763-5_31
Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). doi:10.1007/978-3-319-46723-8_49
Milletari, F., Navab, N., Ahmadi, S.A.: V-net: fully convolutional neural networks for volumetric medical image segmentation. In: Proceedings of 2016 International Conferece on 3D Vision (3DV), pp. 565–571. IEEE (2016)
Dou, Q., Yu, L., Chen, H., Jin, Y., Yang, X., Qin, J., Heng, P.A.: 3D deeply supervised network for automated segmentation of volumetric medical images. Med. Image Anal. 41, 40–54 (2017)
Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: Proceedings of ICML (2015)
Yosinski, J., Clune, J., Bengio, Y., Lipson, H.: How transferable are features in deep neural networks? In: Advances in Neural Information Processing Systems, pp. 3320–3328 (2014)
Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: CVPR 2009 (2009)
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. CoRR (2014)
Szegedy, C., Liu, W., Jia, Y., et al.: Going deeper with convolutions. In: CVPR 2015, pp. 1–9. IEEE (2015)
Tran, D., Bourdev, L., Fergus, R., Torresani, L., Paluri, M.: Learning spatiotemporal features with 3D convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision (CVPR), pp. 4489–4497 (2015)
Karasawa, K., Oda, M., Kitasakab, T., et al.: Multi-atlas pancreas segmentation: Atlas selection based on vessel structure. Med. Image Anal. 39, 18–28 (2017)
Acknowledgment
This study was partially supported by the Swiss National Science Foundation via project 205321_163224/1.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Zeng, G., Yang, X., Li, J., Yu, L., Heng, PA., Zheng, G. (2017). 3D U-net with Multi-level Deep Supervision: Fully Automatic Segmentation of Proximal Femur in 3D MR Images. In: Wang, Q., Shi, Y., Suk, HI., Suzuki, K. (eds) Machine Learning in Medical Imaging. MLMI 2017. Lecture Notes in Computer Science(), vol 10541. Springer, Cham. https://doi.org/10.1007/978-3-319-67389-9_32
Download citation
DOI: https://doi.org/10.1007/978-3-319-67389-9_32
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-67388-2
Online ISBN: 978-3-319-67389-9
eBook Packages: Computer ScienceComputer Science (R0)