Nothing Special   »   [go: up one dir, main page]

Skip to main content

Near-Optimal Placement of Virtualized EPC Functions with Latency Bounds

  • Conference paper
  • First Online:
Communication Systems and Networks (COMSNETS 2017)

Part of the book series: Lecture Notes in Computer Science ((LNCCN,volume 10340))

Included in the following conference series:

Abstract

The proliferation of mobiles devices, application sprawl, and the ever-increasing data volume generates significant stress on cellular networks and particularly on the cellular core, also known as the Evolved Packet Core (EPC), i.e., the cellular network component residing between the radio access network and the Internet. This is further exacerbated by the deployment of hardware appliances for the implementation of a wide range of network functions (e.g., gateways, mobility management, firewalls, network address translation), hindering any opportunity for elastic provisioning, and eventually leading to high operational costs and a significant degree of load imbalance across the EPC.

Network Function Virtualization (NFV) has been seen a promising solution in order to enable elasticity in the cellular core. Applying NFV to the EPC raises the need for network function (NF) placement, which in turn entails significant challenges, due to the stringent delay budgets among cellular core components and the coexistence of communicating data and control plane elements. To address these challenges, we present a linear programming (LP) formulation for the computation of NF placements that strikes a balance between optimality and time complexity. Our evaluation results show that the LP achieves significantly better load balancing, request acceptance rate, and resource utilization compared to a greedy algorithm that performs NF placement inline with carriers’ common practice today.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The relative sever utilization is deducted from their residual capacities in the term \(1-\frac{r_u}{r_{u,max}}\). The same applies to the link utilization.

  2. 2.

    We set \(\upvarepsilon =10^{-10}\) in our simulations.

  3. 3.

    The tests were conducted on a 2 GHz AMD Opteron server (restricted to single core).

  4. 4.

    See Sect. 5.1 for the definition of the load balancing level.

References

  1. ETSI Network Function Virtualization. http://www.etsi.org/technologies-clusters/technologies/nfv

  2. OPNFV. https://www.opnfv.org/

  3. T-NOVA Project. http://www.t-nova.eu/

  4. SONATA Project. http://www.sonata-nfv.eu/

  5. UNIFY Project. http://www.fp7-unify.eu/

  6. 3GPP TS 24.301: 3GPP Non-Access-Stratum (NAS) protocol for Evolved Packet System (EPS). http://www.3gpp.org/DynaReport/24301.htm

  7. Business Case for Juniper Networks Virtualized Mobile Control Gateway, White Paper, Juniper (2013)

    Google Scholar 

  8. Abujoda, A., Kouchaksaraei, H.R., Papadimitriou, P.: SDN-based source routing for scalable service chaining in datacenters. In: Mamatas, L., Matta, I., Papadimitriou, P., Koucheryavy, Y. (eds.) WWIC 2016. LNCS, vol. 9674, pp. 66–77. Springer, Cham (2016). doi:10.1007/978-3-319-33936-8_6

    Chapter  Google Scholar 

  9. Abujoda, A., Papadimitriou, P.: MIDAS: middlebox discovery and selection for on-path flow processing. In: IEEE COMSNETS, Bangalore, India, January 2015

    Google Scholar 

  10. Bagaa, M., Taleb, T., Ksentini, A.: Service-aware network function placement for efficient traffic handling in carrier cloud. In: IEEE WCNC, Istanbul, Turkey, April 2014

    Google Scholar 

  11. Banerjee, A., et al.: Scaling the LTE control-plane for future mobile access. In: ACM CONEXT, Heidelberg, Germany, December 2015

    Google Scholar 

  12. Baumgartner, A., Reddy, V.S., Bauschert, T.: Mobile core network virtualization: a model for combined virtual core network function placement and topology optimization. In: IEEE NetSoft 2015, London, UK, April 2015

    Google Scholar 

  13. Baumgartner, A., Reddy, V.S., Bauschert, T.: Combined virtual mobile core network function placement and topology optimization with latency bounds. In: EWSDN 2015, Bilbao, Spain, September 2015

    Google Scholar 

  14. Basta, A., et al.: Applying NFV and SDN to LTE mobile core gateways, the functions placement problem. In: 4th Workshop on All Things Cellular, ACM SIGCOMM 2014, Chicago, US, August 2014

    Google Scholar 

  15. Cao, Z., Abujoda, A., Papadimitriou, P.: Distributed data deluge (D3): efficient state management for virtualized network functions. In: IEEE INFOCOM SWFAN, San Francisco, USA, April 2016

    Google Scholar 

  16. Cohen, R., Lewin-Eytan, L., Naor, J., Raz, D.: Near optimal placement of virtual network functions. In: IEEE INFOCOM, Hong Kong, China, April 2015

    Google Scholar 

  17. Diego, W., Hamchaoui, I., Lagrange, X.: The cost of QoS in LTE/EPC mobile networks evaluation of processing load. In: IEEE VTC, Boston, MA, USA (2015)

    Google Scholar 

  18. Diego, W., Hamchaoui, I., Lagrange, X.: Cost factor analysis of QoS in LTE/EPC mobile networks. In: IEEE CCNC, Las Vegas, USA, January 2016

    Google Scholar 

  19. Dietrich, D., Abujoda, A., Papadimitriou, P.: Network service embedding across multiple providers with nestor. In: IFIP Networking, Toulouse, France, May 2015

    Google Scholar 

  20. Dietrich, D., Papagianni, C., Papadimitriou, P., Baras, J.: Network function placement on virtualized cellular cores. In: IEEE COMSNETS, Bangalore, India, January 2017

    Google Scholar 

  21. Bari, M.F.: Data center network virtualization: a survey. IEEE Commun. Surv. Tutorials 15(2), 909–928 (2013)

    Article  Google Scholar 

  22. Fayazbakhsh, S., et al.: Enforcing network-wide policies in the presence of dynamic middlebox actions using flowtags. In: USENIX NSDI 2014, Seattle, USA, April 2014

    Google Scholar 

  23. Gember-Jacobson, A., et al.: OpenNF: enabling innovation in network function control. In: ACM SIGCOMM 2014, Chicago, USA, August 2014

    Google Scholar 

  24. Hirschman, B., et al.: High-performance evolved packet core signaling and bearer processing on general-purpose processors. IEEE Netw. 29(3), 6–14 (2015)

    Article  Google Scholar 

  25. Lukovszki, T., Schmid, S.: Online admission control and embedding of service chains. In: Scheideler, C. (ed.) Structural Information and Communication Complexity. LNCS, vol. 9439, pp. 104–118. Springer, Cham (2015). doi:10.1007/978-3-319-25258-2_8

    Chapter  Google Scholar 

  26. Mehraghdam, S., Keller, M., Karl, H.: Specifying and placing chains of virtual network functions. In: IEEE CloudNet, Luxembourg, October 2014

    Google Scholar 

  27. Prados-Garzon, J., et al.: Latency evaluation of a virtualized MME. In: IEEE Wireless Days, Toulouse, France, March 2016

    Google Scholar 

  28. Qazi, Z., et al.: KLEIN: a minimally disruptive design for an elastic cellular core. In: ACM SOSR 2016, Santa Clara, USA, March 2016

    Google Scholar 

  29. Qazi, Z., et al.: SIMPLE-fying middlebox policy enforcement using SDN. In: ACM SIGCOMM 2013, Hong Kong, China, August 2013

    Google Scholar 

  30. Rajan, A.S., et al.: Understanding the bottlenecks in virtualizing cellular core network functions. In: IEEE LANMAN, Beijing, China, April 2015

    Google Scholar 

  31. Sama, M.R., Ben Hadj Said, S., Guillouard, K., Suciu, L.: Enabling network programmability in LTE/EPC architecture using OpenFlow. In: WiOpt 2014, Hammamet, Tunisia, May 2014

    Google Scholar 

  32. Savic, Z.: LTE Design and Deployment Strategies - CISCO. http://tinyurl.com/lj2erpg

  33. Shafiq, M.Z., Ji, L., Liu, A.X., Pang, J., Wang, J.: A first look at cellular machine-to-machine traffic: large scale measurement and characterization. In: ACM SIGMETRICS, London, UK, June 2012

    Google Scholar 

  34. Taleb, T., Bagaa, M., Ksentini, A.: User mobility-aware virtual network function placement for virtual 5G network infrastructure. In: IEEE ICC 2025, London, UK, June 2015

    Google Scholar 

  35. Taleb, T., Ksentini, A.: Gateway relocation avoidance-aware network function placement in carrier cloud. In: ACM MSWiM, Barcelona, Spain, November 2013

    Google Scholar 

  36. Wang, Z., et al.: An untold story of middleboxes in cellular networks. In: ACM SIGCOMM 2011, Toronto, Canada, August 2011

    Google Scholar 

  37. Yousaf, F., et al.: SoftEPC: dynamic instantiation of mobile core network entities for efficient resource utilization. In: IEEE ICC, Budapest, Hungary, June 2013

    Google Scholar 

Download references

Acknowledgments

This work was partially supported by the EU FP7 T-NOVA Project (619520).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Dietrich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Dietrich, D., Papagianni, C., Papadimitriou, P., Baras, J.S. (2017). Near-Optimal Placement of Virtualized EPC Functions with Latency Bounds. In: Sastry, N., Chakraborty, S. (eds) Communication Systems and Networks. COMSNETS 2017. Lecture Notes in Computer Science(), vol 10340. Springer, Cham. https://doi.org/10.1007/978-3-319-67235-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67235-9_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67234-2

  • Online ISBN: 978-3-319-67235-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics