Abstract
The analysis of phonocardiogram (PCG), although considered as well established in a clinical application, still constitutes the valuable source of diagnostic data. Currently, electronic auscultation provides digital signals which can be processed in order to automatically evaluate the condition of heart or lungs. In this paper, we propose a novel approach for the classification of phonocardiographic signals. We extracted a set of time-frequency parameters which enable to effectively differentiate between normal and abnormal heart beats (with valve defects). These features have constituted an input of the convolutional neural network, which we used for classification of pathological signals. The Aalborg University heart sounds database from PhysioNet/Computing in Cardiology Challenge 2016 was used for verification of developed algorithms. We obtained 99.1% sensitivity and 91.6% specificity on the test data, which is motivational for further research.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Liu, C., Springer, D., Li, Q., Moody, B., Juan, R.A., Chorro, F.J., Castells, F., Roig, J.M., Silva, I., Johnson, A.E.W., Syed, Z., Schmidt, S.E., Papadaniil, C.D., Hadjileontiadis, L., Naseri, H., Moukadem, A., Dieterlen, A., Brandt, C., Tang, H., Samieinasab, M., Samieinasab, M.R., Sameni, R., Mark, R.G., Clifford, G.D.: An open access database for the evaluation of heart sound algorithms. Physiol. Meas. 37, 2181–2213 (2016)
Ray, R., Chambers, J.: Mitral valve disease. Int. J. Clin. Pract. 68, 1216–1220 (2014)
Sun, S., Jiang, Z., Wang, H., Fang, Y.: Automatic moment segmentation and peak detection analysis of heart sound pattern via short-time modified Hilbert transform. Comput. Methods Programs Biomed. 114, 219–230 (2014)
Varghees, V.N., Ramachandran, K.I.: A novel heart sound activity detection framework for automated heart sound analysis. Biomed. Signal Process. Control 13, 174–188 (2014)
Tang, H., Li, T., Qiu, T., Park, Y.: Segmentation of heart sounds based on dynamic clustering. Biomed. Signal Process. Control 7, 509–516 (2012)
Sedighian, P., Subudhi, A.W., Scalzo, F., Asgari, S.: Pediatric heart sound segmentation using Hidden Markov Model. In: 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 5490–5493. IEEE (2014)
Uguz, H.: A biomedical system based on artificial neural network and principal component analysis for diagnosis of the heart valve diseases. J. Med. Syst. 36, 61–72 (2012)
Zheng, Y., Guo, X., Ding, X.: A novel hybrid energy fraction and entropy-based approach for systolic heart murmurs identification. Expert Syst. Appl. 42, 2710–2721 (2015)
Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Pereira, F., Burges, C.J.C., Bottou, L., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems 25, pp. 1097–1105. Curran Associates, Inc. (2012)
Karpathy, A., Fei-Fei, L.: Deep visual-semantic alignments for generating image descriptions. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2015)
Amodei, D., Ananthanarayanan, S., Anubhai, R., Bai, J., Battenberg, E., Case, C., Casper, J., Catanzaro, B., Cheng, Q., Chen, G., et al.: Deep speech 2: end-to-end speech recognition in english and mandarin. In: International Conference on Machine Learning, pp. 173–182 (2016)
Srivastava, N., Hinton, G., Krizhevsky, A.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Res. 15, 1929–1958 (2014)
Duchi, J., Hazan, E., Singer, Y.: Adaptive subgradient methods for online learning and stochastic optimization. J. Mach. Learn. Res. 12, 2121–2159 (2011)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG
About this paper
Cite this paper
Kucharski, D., Grochala, D., Kajor, M., Kańtoch, E. (2018). A Deep Learning Approach for Valve Defect Recognition in Heart Acoustic Signal. In: Borzemski, L., Świątek, J., Wilimowska, Z. (eds) Information Systems Architecture and Technology: Proceedings of 38th International Conference on Information Systems Architecture and Technology – ISAT 2017. ISAT 2017. Advances in Intelligent Systems and Computing, vol 655. Springer, Cham. https://doi.org/10.1007/978-3-319-67220-5_1
Download citation
DOI: https://doi.org/10.1007/978-3-319-67220-5_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-67219-9
Online ISBN: 978-3-319-67220-5
eBook Packages: EngineeringEngineering (R0)