Abstract
Constrained community detection is a kind of community detection taking given constraints into account to improve the accuracy of community detection. Optimizing constrained Hamiltonian is one of the methods for constrained community detection. Constrained Hamiltonian consists of Hamiltonian which is generalized modularity and constrained term which takes given constraints into account. Nakata proposed a method for constrained community detection in monoplex networks based on the optimization of constrained Hamiltonian by extended Louvain method.
In this paper, we propose a new method for constrained community detection in multiplex networks. Multiplex networks are the combinations of multiple individual networks. They can represent temporal networks or networks with several types of edges. While optimizing modularity proposed by Mucha et al. is popular for community detection in multiplex networks, our method optimizes the constrained Hamiltonian which we extend for multiplex networks. By using our proposed method, we successfully detect communities taking constraints into account. We also successfully improve the accuracy of community detection by using our method iteratively. Our method enables us to carry out constrained community detection interactively in multiplex networks.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. J. Stat. Mech.: Theory Exp. 2008(10), P10008 (2008). doi:10.1088/1742-5468/2008/10/P10008
De Domenico, M., Lancichinetti, A., Arenas, A., Rosvall, M.: Identifying modular flows on multilayer networks reveals highly overlapping organization in social systems. Phys. Rev. X 5, 011027 (2015). doi:10.1103/PhysRevX.5.011027
De Domenico, M., Porter, M.A., Arenas, A.: MuxViz: a tool for multilayer analysis and visualization of networks. J. Complex Netw. 3(2), 159–176 (2015). doi:10.1093/comnet/cnu038
Eaton, E., Mansbach, R.: A spin-glass model for semi-supervised community detection. In: Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence (AAAI-2012), pp. 900–906 (2012)
Jutla, I.S., Jeub, L.G.S., Mucha, P.J.: A generalized Louvain method for community detection implemented in matlab (2011–2014). http://netwiki.amath.unc.edu/GenLouvain
Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983). doi:10.1126/science.220.4598.671
Kivelä, M., Arenas, A., Barthelemy, M., Gleeson, J.P., Moreno, Y., Porter, M.A.: Multilayer networks. J. Complex Netw. 2(3), 203–271 (2014). doi:10.1093/comnet/cnu016
Mucha, P.J., Richardson, T., Macon, K., Porter, M.A., Onnela, J.P.: Community structure in time-dependent, multiscale, and multiplex networks. Science 328(5980), 876–878 (2010). doi:10.1126/science.1184819
Nakata, K., Murata, T.: Fast optimization of hamiltonian for constrained community detection. In: Mangioni, G., Simini, F., Uzzo, S.M., Wang, D. (eds.) Complex Networks VI. SCI, vol. 597, pp. 79–89. Springer, Cham (2015). doi:10.1007/978-3-319-16112-9_8
Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in networks. Phys. Rev. E 69, 026113 (2004). doi:10.1103/PhysRevE.69.026113
Padgett, J.F., Ansell, C.K.: Robust action and the rise of the medici, 1400–1434. Am. J. Sociol. 98(6), 1259–1319 (1993). doi:10.1086/230190
Reichardt, J., Bornholdt, S.: Statistical mechanics of community detection. Phys. Rev. E 74, 016110 (2006). doi:10.1103/PhysRevE.74.016110
Acknowledgement
This work was supported by Tokyo Tech - Fuji Xerox Cooperative Research (Project Code KY260195), JSPS Grant-in-Aid for Scientific Research(B) (Grant Number 17H01785) and JST CREST (Grant Number JPMJCR1687).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Eguchi, K., Murata, T. (2017). Constrained Community Detection in Multiplex Networks. In: Ciampaglia, G., Mashhadi, A., Yasseri, T. (eds) Social Informatics. SocInfo 2017. Lecture Notes in Computer Science(), vol 10539. Springer, Cham. https://doi.org/10.1007/978-3-319-67217-5_6
Download citation
DOI: https://doi.org/10.1007/978-3-319-67217-5_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-67216-8
Online ISBN: 978-3-319-67217-5
eBook Packages: Computer ScienceComputer Science (R0)