Nothing Special   »   [go: up one dir, main page]

Skip to main content

Abstract

This paper reports the use of the PAELLA algorithm in the context of weighted regression. First, an experiment comparing this new approach versus probabilistic macro sampling is reported, as a natural extension of previous work. Then another different experiment is reported where this approach is tested against a state of the art regression technique. Both experiments provide satisfactory results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Code available in http://www.optimal-group.org/Resource/WLETSVR.html.

References

  1. Ordieres, J., Vergara, E., Capuz, R., Salazar, R.: Neural network prediction model for fine particulate matter (pm 2.5) on the us-mexico border in el paso (texas) and ciudad juárez (chihuahua). Environ. Model. Softw. 20(5), 547–559 (2005)

    Article  Google Scholar 

  2. Salazar-Ruiz, E., Ordieres, J., Vergara, E., Capuz-Rizo, S.F.: Development and comparative analysis of tropospheric ozone prediction models using linear and artificial intelligence-based models in mexicali, baja california (Mexico) and calexico, california (US). Environ. Model. Softw. 23(8), 1056–1069 (2008)

    Article  Google Scholar 

  3. Gong, B., Ordieres-Meré, J.: Prediction of daily maximum ozone threshold exceedances by preprocessing and ensemble artificial intelligence techniques: case study of hong kong. Environ. Model. Softw. 84, 290–303 (2016)

    Article  Google Scholar 

  4. Bing, G., Ordieres-Meré, J., Cabrera, C.B.: Prediction models for ozone in metropolitan area of mexico city based on artificial intelligence techniques. Int. J. Inf. Decis. Sci. 7(2), 115–139 (2015)

    Google Scholar 

  5. Ordieres-Meré, J., Martínez-de Pisón-Ascacibar, F., González-Marcos, A., Ortiz-Marcos, I.: Comparison of models created for the prediction of the mechanical properties of galvanized steel coils. J. Intell. Manuf. 21(4), 403–421 (2010)

    Article  Google Scholar 

  6. Gonzalez-Marcos, A., Alba-Elias, F., Castejon-Limas, M., Ordieres-Mere, J.: Development of neural network-based models to predict mechanical properties of hot dip galvanised steel coils. Int. J. Data Min. Model. Manage. 3(4), 389–405 (2011)

    Google Scholar 

  7. Ordieres, J., López, L., Bello, A., Garcia, A.: Intelligent methods helping the design of a manufacturing system for die extrusion rubbers. Int. J. Comput. Integr. Manuf. 16(3), 173–180 (2003)

    Article  Google Scholar 

  8. Menéndez, C., Ordieres, J., Ortega, F.: Importance of information pre-processing in the improvement of neural network results. Expert Syst. 13(2), 95–103 (1996)

    Article  Google Scholar 

  9. Dasu, T., Johnson, T.: Exploratory Data Mining and Data Cleaning (2003)

    Google Scholar 

  10. Walczak, B.: Neural networks with robust backpropagation learning algorithm. Anal. Chim. Acta 322(1), 21–29 (1996)

    Article  Google Scholar 

  11. Limas, M.C., Meré, J.B.O., Ascacibar, F.J.M.D.P., González, E.P.V.: Outlier detection and data cleaning in multivariate non-normal samples: The PAELLA algorithm. Data Mining and Knowledge Discovery (2004)

    Google Scholar 

  12. Castejón-Limas, M., Alaiz-Moreton, H., Fernández-Robles, L., Fernández-Llamas, C.: Coupling the paella algorithm to predictive models (2017). Manuscript submitted for publication

    Google Scholar 

  13. Shao, Y.H., Zhang, C.H., Yang, Z.M., Jing, L., Deng, N.Y.: An \(\epsilon \)-twin support vector machine for regression. Neural Comput. Appl. 23(1), 175–185 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support of Spanish Ministerio de Economía, Industria y Competitividad through grant DPI2016-79960-C3-2-P. We would like to also express our gratitude to Castilla y León Supercomputing Center whose cooperation allowed us to run around one million neural network trainings for the experiments reported on this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Fernández-Robles .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Castejón-Limas, M. et al. (2018). PAELLA as a Booster in Weighted Regression. In: Pérez García, H., Alfonso-Cendón, J., Sánchez González, L., Quintián, H., Corchado, E. (eds) International Joint Conference SOCO’17-CISIS’17-ICEUTE’17 León, Spain, September 6–8, 2017, Proceeding. SOCO ICEUTE CISIS 2017 2017 2017. Advances in Intelligent Systems and Computing, vol 649. Springer, Cham. https://doi.org/10.1007/978-3-319-67180-2_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67180-2_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67179-6

  • Online ISBN: 978-3-319-67180-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics