Abstract
This paper reports the use of the PAELLA algorithm in the context of weighted regression. First, an experiment comparing this new approach versus probabilistic macro sampling is reported, as a natural extension of previous work. Then another different experiment is reported where this approach is tested against a state of the art regression technique. Both experiments provide satisfactory results.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Code available in http://www.optimal-group.org/Resource/WLETSVR.html.
References
Ordieres, J., Vergara, E., Capuz, R., Salazar, R.: Neural network prediction model for fine particulate matter (pm 2.5) on the us-mexico border in el paso (texas) and ciudad juárez (chihuahua). Environ. Model. Softw. 20(5), 547–559 (2005)
Salazar-Ruiz, E., Ordieres, J., Vergara, E., Capuz-Rizo, S.F.: Development and comparative analysis of tropospheric ozone prediction models using linear and artificial intelligence-based models in mexicali, baja california (Mexico) and calexico, california (US). Environ. Model. Softw. 23(8), 1056–1069 (2008)
Gong, B., Ordieres-Meré, J.: Prediction of daily maximum ozone threshold exceedances by preprocessing and ensemble artificial intelligence techniques: case study of hong kong. Environ. Model. Softw. 84, 290–303 (2016)
Bing, G., Ordieres-Meré, J., Cabrera, C.B.: Prediction models for ozone in metropolitan area of mexico city based on artificial intelligence techniques. Int. J. Inf. Decis. Sci. 7(2), 115–139 (2015)
Ordieres-Meré, J., Martínez-de Pisón-Ascacibar, F., González-Marcos, A., Ortiz-Marcos, I.: Comparison of models created for the prediction of the mechanical properties of galvanized steel coils. J. Intell. Manuf. 21(4), 403–421 (2010)
Gonzalez-Marcos, A., Alba-Elias, F., Castejon-Limas, M., Ordieres-Mere, J.: Development of neural network-based models to predict mechanical properties of hot dip galvanised steel coils. Int. J. Data Min. Model. Manage. 3(4), 389–405 (2011)
Ordieres, J., López, L., Bello, A., Garcia, A.: Intelligent methods helping the design of a manufacturing system for die extrusion rubbers. Int. J. Comput. Integr. Manuf. 16(3), 173–180 (2003)
Menéndez, C., Ordieres, J., Ortega, F.: Importance of information pre-processing in the improvement of neural network results. Expert Syst. 13(2), 95–103 (1996)
Dasu, T., Johnson, T.: Exploratory Data Mining and Data Cleaning (2003)
Walczak, B.: Neural networks with robust backpropagation learning algorithm. Anal. Chim. Acta 322(1), 21–29 (1996)
Limas, M.C., Meré, J.B.O., Ascacibar, F.J.M.D.P., González, E.P.V.: Outlier detection and data cleaning in multivariate non-normal samples: The PAELLA algorithm. Data Mining and Knowledge Discovery (2004)
Castejón-Limas, M., Alaiz-Moreton, H., Fernández-Robles, L., Fernández-Llamas, C.: Coupling the paella algorithm to predictive models (2017). Manuscript submitted for publication
Shao, Y.H., Zhang, C.H., Yang, Z.M., Jing, L., Deng, N.Y.: An \(\epsilon \)-twin support vector machine for regression. Neural Comput. Appl. 23(1), 175–185 (2013)
Acknowledgements
We gratefully acknowledge the financial support of Spanish Ministerio de Economía, Industria y Competitividad through grant DPI2016-79960-C3-2-P. We would like to also express our gratitude to Castilla y León Supercomputing Center whose cooperation allowed us to run around one million neural network trainings for the experiments reported on this paper.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG
About this paper
Cite this paper
Castejón-Limas, M. et al. (2018). PAELLA as a Booster in Weighted Regression. In: Pérez García, H., Alfonso-Cendón, J., Sánchez González, L., Quintián, H., Corchado, E. (eds) International Joint Conference SOCO’17-CISIS’17-ICEUTE’17 León, Spain, September 6–8, 2017, Proceeding. SOCO ICEUTE CISIS 2017 2017 2017. Advances in Intelligent Systems and Computing, vol 649. Springer, Cham. https://doi.org/10.1007/978-3-319-67180-2_25
Download citation
DOI: https://doi.org/10.1007/978-3-319-67180-2_25
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-67179-6
Online ISBN: 978-3-319-67180-2
eBook Packages: EngineeringEngineering (R0)