Nothing Special   »   [go: up one dir, main page]

Skip to main content

Revisiting Abnormalities in Brain Network Architecture Underlying Autism Using Topology-Inspired Statistical Inference

  • Conference paper
  • First Online:
Connectomics in NeuroImaging (CNI 2017)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10511))

Included in the following conference series:

Abstract

A large body of evidence relates autism with abnormal structural and functional brain connectivity. Structural covariance MRI (scMRI) is a technique that maps brain regions with covarying gray matter density across subjects. It provides a way to probe the anatomical structures underlying intrinsic connectivity networks (ICNs) through the analysis of the gray matter signal covariance. In this paper, we apply topological data analysis in conjunction with scMRI to explore network-specific differences in the gray matter structure in subjects with autism versus age-, gender- and IQ-matched controls. Specifically, we investigate topological differences in gray matter structures captured by structural covariance networks (SCNs) derived from three ICNs strongly implicated in autism, namely, the salience network (SN), the default mode network (DMN) and the executive control network (ECN). By combining topological data analysis with statistical inference, our results provide evidence of statistically significant network-specific structural abnormalities in autism, from SCNs derived from SN and ECN. These differences in brain architecture are consistent with direct structural analysis using scMRI (Zielinski et al. 2012).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Altaye, M., Holland, S.K., Wilke, M., Gaser, C.: Infant brain probability templates for MRI segmentation and normalization. NeuroImage 43(4), 721–730 (2008)

    Article  Google Scholar 

  2. Böhm, W., Hornik, K.: A Kolmogorov-Smirnov test for r samples. Fundam. Inf. 117(1–4), 103–125 (2012)

    MathSciNet  MATH  Google Scholar 

  3. Bullmore, E., Sporns, O.: Complex brain networks: graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 10(3), 186–198 (2009)

    Article  Google Scholar 

  4. Chung, M.K., Villalta-Gil, V., Lee, H., Rathouz, P.J., Lahey, B.B., Zald, D.H.: Exact topological inference for paired brain networks via persistent homology. bioRxiv:140533 (2017)

    Google Scholar 

  5. Courchesne, E., Pierce, K., Schumann, C.M., Redcay, E., Buckwalter, J.A., Kennedy, D.P., Morgan, J.: Mapping early brain development in autism. Neuron 56(2), 399–413 (2007)

    Article  Google Scholar 

  6. Edelsbrunner, H., Letscher, D., Zomorodian, A.J.: Topological persistence and simplification. Discrete Comput. Geom. 28, 511–533 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. Fair, D.A., Cohen, A.L., Dosenbach, N.U.F., Church, J.A., Miezin, F.M., Barch, D.M., Raichle, M.E., Petersen, S.E., Schlaggar, B.L.: The maturing architecture of the brain’s default network. Proc. Natl. Acad. Sci. 105(10), 4028–4032 (2008)

    Article  Google Scholar 

  8. Fox, M.D., Snyder, A.Z., Vincent, J.L., Corbetta, M., Van Essen, D.C., Raichle, M.E.: The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc. Natl. Acad. Sci. U.S.A. 102(27), 9673–9678 (2005)

    Article  Google Scholar 

  9. Minkova, L., Eickhoff, S.B., Abdulkadir, A., Kaller, C.P., Peter, J., Scheller, E., Lahr, J., Roos, R.A., Durr, A., Leavitt, B.R., Tabrizi, S.J., Klöppel, S., Investigators, T.-H.: Large-scale brain network abnormalities in huntington’s disease revealed by structural covariance. Hum. Brain Mapp. 37(1), 67–80 (2016)

    Article  Google Scholar 

  10. Montembeault, M., Rouleau, I., Provost, J.-S., Brambati, S.M.: Altered gray matter structural covariance networks in early stages of Alzheimer’s disease. Cereb. Cortex 26(6), 2650 (2016)

    Article  Google Scholar 

  11. Schumann, C.M., Bloss, C.S., Barnes, C.C., Wideman, G.M., Carper, R.A., Akshoomoff, N., Pierce, K., Hagler, D., Schork, N., Lord, C., Courchesne, E.: Longitudinal magnetic resonance imaging study of cortical development through early childhood in autism. J. Neurosci. 30(12), 4419–4427 (2010)

    Article  Google Scholar 

  12. Seeley, W.W., Crawford, R.K., Zhou, J., Miller, B.L., Greicius, M.D.: Neurodegenerative diseases target large-scale human brain networks. Neuron 62, 42–52 (2009)

    Article  Google Scholar 

  13. Seeley, W.W., Menon, V., Schatzberg, A.F., Keller, J., Glover, G.H., Kenna, H., Reiss, A.L., Greicius, M.D.: Dissociable intrinsic connectivity networks for salience processing and executive control. J. Neurosci. 27(9), 2349–2356 (2007)

    Article  Google Scholar 

  14. Stigler, K.A., McDonald, B.C., Anand, A., Saykin, A.J., McDougle, C.J.: Structural and functional magnetic resonance imaging of autism spectrum disorders. Brain Res. 1380, 146–161 (2011)

    Article  Google Scholar 

  15. Wilke, M., Holland, S.K., Altaye, M., Gaser, C.: Template-O-Matic: a toolbox for creating customized pediatric templates. NeuroImage 41(3), 903–913 (2008)

    Article  Google Scholar 

  16. Zielinski, B.A., Anderson, J.S., Froehlich, A.L., Prigge, M.B.D., Nielsen, J.A., Cooperrider, J.R., Cariello, A.N., Fletcher, P.T., Alexander, A.L., Lange, N., Bigler, E.D., Lainhart, J.E.: scMRI reveals large-scale brain network abnormalities in Autism. PLOS ONE 7(11), 1–14 (2012)

    Article  Google Scholar 

  17. Zielinski, B.A., Gennatas, E.D., Zhou, J., Seeley, W.W.: Network-level structural covariance in the developing brain. Proc. Natl. Acad. Sci. 107(42), 18191–18196 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH grant R01EB022876 and NSF grant IIS-1513616.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sourabh Palande .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Palande, S., Jose, V., Zielinski, B., Anderson, J., Fletcher, P.T., Wang, B. (2017). Revisiting Abnormalities in Brain Network Architecture Underlying Autism Using Topology-Inspired Statistical Inference. In: Wu, G., Laurienti, P., Bonilha, L., Munsell, B. (eds) Connectomics in NeuroImaging. CNI 2017. Lecture Notes in Computer Science(), vol 10511. Springer, Cham. https://doi.org/10.1007/978-3-319-67159-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67159-8_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67158-1

  • Online ISBN: 978-3-319-67159-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics