Nothing Special   »   [go: up one dir, main page]

Skip to main content

Edge Real-Time Medical Data Segmentation for IoT Devices with Computational and Memory Constrains

  • Conference paper
  • First Online:
Computational Collective Intelligence (ICCCI 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10449))

Included in the following conference series:

Abstract

The Internet of Things (IoT) becomes very important tool for data gathering and management in many environments. The majority of dedicated solutions register data only at time of events, while in case of medical data full records for long time periods are usually needed. The precision of acquired data and the amount of data sent by sensor-equipped IoT devices has vital impact on lifetime of these devices. In case of solutions, where multiple sensors are available for single device with limited computation power and memory, the complex compression or transformation methods cannot be applied - especially in case of nano device injected to a body. Thus this paper is focused on linear complexity segmentation algorithms that can be used by the resource-limited devices. The state-of-art data segmentation methods are analysed and adapted for simple IoT devices. Two segmentation algorithms are proposed and tested on a real-world dataset collected from a prototype of the IoT device.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Charith, P., Chi, H., Srimal, J.: The emerging Internet of Things marketplace from an industrial perspective: a survey. IEEE Trans. Emerg. Top. Comput. 3(4), 34–42 (2015)

    Google Scholar 

  2. Atzori, L., Iera, A., Morabito, G.: The Internet of Things: a survey. Comput. Netw. 54(15), 2787–2805 (2010)

    Article  Google Scholar 

  3. Athreya, A., Tague, P.: Network self-organization in the Internet of Things Networking and Control (IoT-NC). In: IEEE International Workshop, pp. 25–33 (2013)

    Google Scholar 

  4. Sheng, Z., Yang, S., Yu, Y., Vasilakos, A., Mccann, J., Leung, K.: A survey on the IETF protocol suite for the Internet of Things: standards, challenges, and opportunities. IEEE Wirel. Commun. 20(6), 91–98 (2013)

    Article  Google Scholar 

  5. Ning, H., Liu, H., Yang, L.: Cyberentity security in the Internet of Things. Computer 46(4), 46–53 (2013)

    Article  Google Scholar 

  6. Wesołowski, T.E., Porwik, P., Doroz, R.: Electronic health record security based on ensemble classification of keystroke dynamics. Appl. Artif. Intell. 30(6), 521–540 (2016)

    Article  Google Scholar 

  7. Tsai, C., Lai, C., Chiang, M., Yang, L.: Data mining for Internet of Things: a survey. Commun. Surv. Tutor. 99, 1–21 (2013)

    Google Scholar 

  8. Gaura, E., Brusey, J., Allen, M., Wilkins, R., Goldsmith, D., Rednic, R.: Edge mining the Internet of Things. IEEE Sens. J. 13(10), 3816–3825 (2013)

    Article  Google Scholar 

  9. Keogh, E., Chakrabarti, K., Pazzani, M., et al.: Knowl. Inf. Syst. 3, 263 (2001). doi:10.1007/PL00011669

    Article  Google Scholar 

  10. Bishop, C.: Pattern Recognition and Machine Learning. Springer, Heidelberg (2006). doi:10.1007/978-1-4615-7566-5

    Book  MATH  Google Scholar 

  11. Murakami, T., Asai, K., Yamazaki, E.: Vector quantiser of video signals. Electron. Lett. 18, 1005–1006 (1981)

    Article  Google Scholar 

  12. Lin, J., Keogh, E., Lonardi, S., Chiu, B.: A symbolic representation of time series, with implications for streaming algorithms. In: Proceedings of the ACM SIGMOD, San Diego, CA, USA, pp. 9–12 (2003)

    Google Scholar 

  13. Ji, S., Xue, Y., Carin, L.: Bayesian compressive sensing. IEEE Trans. Signal Process. 56, 2346–2356 (2008)

    Article  MathSciNet  Google Scholar 

  14. Bello, J.: Measuring structural similarity in music. IEEE Trans. Audio Speech Lang. Process 19, 2013–2025 (2011)

    Article  Google Scholar 

  15. Schoellhammer, T., Greenstein, B., Osterweil, E., Wimbrow, M., Estrin, D.: Lightweight temporal compression of microclimate datasets. In: Proceedings of the 29th Annual IEEE International Conference on Local Computer Networks, Tampa, FL, USA, 16–18 November 2004, pp. 516–524 (2004)

    Google Scholar 

  16. Lin, J., Keogh, E., Lonardi, S., Patel, P.: Finding motifs in time series. In: Proceedings of the 2nd Workshop on Temporal Data Mining, Edmonton, Canada, 23–26 July 2002, pp. 53–68 (2002)

    Google Scholar 

  17. Agrawal, R., Faloutsos, C., Swami, A.: Efficient similarity search in sequence databases. In: Lomet, D.B. (ed.) FODO 1993. LNCS, vol. 730, pp. 69–84. Springer, Heidelberg (1993). doi:10.1007/3-540-57301-1_5

    Chapter  Google Scholar 

  18. Hunter, J., McIntosh, N.: Knowledge-based event detection in complex time series data. In: Horn, W., Shahar, Y., Lindberg, G., Andreassen, S., Wyatt, J. (eds.) AIMDM 1999. LNCS, vol. 1620, pp. 271–280. Springer, Heidelberg (1999). doi:10.1007/3-540-48720-4_30

    Chapter  Google Scholar 

  19. Kudłacik, P., Porwik, P., Wesołowski, T.: Fuzzy approach for intrusion detection based on user’s commands. Soft Comput. 20(7), 2705–2719 (2016)

    Article  Google Scholar 

  20. Balasubramaniam, S., Kangasharju, J.: Realizing the internet of nano things: challenges, solutions, and applications. Soft. Comput. 46(2), 62–68 (2013)

    Google Scholar 

  21. Danieletto, M., Bui, N., Zorzi, M.: A compression and classification solution for the Internet of Things. Sensors 14(1), 68–94 (2014). doi:10.3390/s140100068

    Article  Google Scholar 

  22. Bernas, M., Płaczek, B.: Period-aware local modelling and data selection for time series prediction. Expert Syst. Appl. 59, 60–77 (2016)

    Article  Google Scholar 

  23. Preacher, K., Curran, P., Bauer, D.: Computational tools for probing interactions in multiple linear regression, multilevel modeling, and latent curve analysis. J. Educ. Behav. Stat. 31(4), 437–448 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcin Bernas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Bernas, M., Płaczek, B., Sapek, A. (2017). Edge Real-Time Medical Data Segmentation for IoT Devices with Computational and Memory Constrains. In: Nguyen, N., Papadopoulos, G., Jędrzejowicz, P., Trawiński, B., Vossen, G. (eds) Computational Collective Intelligence. ICCCI 2017. Lecture Notes in Computer Science(), vol 10449. Springer, Cham. https://doi.org/10.1007/978-3-319-67077-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67077-5_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67076-8

  • Online ISBN: 978-3-319-67077-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics