Nothing Special   »   [go: up one dir, main page]

Skip to main content

Transformation of Variance to Possibilistic Variance and Vice Versa

  • Conference paper
  • First Online:
Advances in Fuzzy Logic and Technology 2017 (EUSFLAT 2017, IWIFSGN 2017)

Abstract

We introduce a new transformation of the variance function to possibilistic variance and vice versa. We show that the transformation of the center-of-gravity-based formulation of variance gives exactly the possibilistic variance introduced by Carlsson and Fullér and that the corresponding inverse transformation gives the original variance formula from the possibilistic variance. We also provide fast-computation formulas for both variances for triangular and trapezoidal fuzzy numbers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Carlsson, C., Fullér, R.: On possibilistic mean value and variance of fuzzy numbers. Fuzzy Sets Syst. 122(2), 315–326 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  2. Dubois, D., Foully, L., Mauris, G., Prade, H.: Probability-possibility transformations, triangular fuzzy sets and probabilistic inequalities. Reliable Comput. 10(4), 273–297 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Dubois, D., Prade, H.: The legacy of \(50\) years of fuzzy sets: a discussion. Fuzzy Sets Syst. 281, 21–31 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Dubois, D., Prade, H.: Possibility Theory. Plenum Press, New York (1988)

    Book  MATH  Google Scholar 

  5. Fisher, R.: The correlation between relatives on the supposition of mendelian inheritance. Trans. R. Soc. Edinb. 52, 399–433 (1918)

    Article  Google Scholar 

  6. Fullér, R., Majlender, P.: On weighted possibilistic mean and variance of fuzzy numbers. Fuzzy Sets Syst. 136, 363–374 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Klir, G.J., Parviz, B.: Probability-possibility transformations: a comparison. Int. J. Gen Syst 21(3), 291–310 (1992)

    Article  MATH  Google Scholar 

  8. Klir, G.J., Yuan, B.: Fuzzy Sets and Fuzzy Logic, Theory and Applications. Prentice Hall (1995)

    Google Scholar 

  9. Luukka, P., Stoklasa, J., Collan, M.: Transformations between the center of gravity and the possibilistic mean for triangular and trapezoidal fuzzy numbers (Unpublished)

    Google Scholar 

  10. Zadeh, L.A.: A note on similarity-based definitions of possibility and probability. Inf. Sci. 267, 334–336 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Zadeh, L.A.: Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets Syst. 1(1), 3–28 (1978)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Stoklasa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Luukka, P., Stoklasa, J., Collan, M. (2018). Transformation of Variance to Possibilistic Variance and Vice Versa. In: Kacprzyk, J., Szmidt, E., Zadrożny, S., Atanassov, K., Krawczak, M. (eds) Advances in Fuzzy Logic and Technology 2017. EUSFLAT IWIFSGN 2017 2017. Advances in Intelligent Systems and Computing, vol 642. Springer, Cham. https://doi.org/10.1007/978-3-319-66824-6_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66824-6_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66823-9

  • Online ISBN: 978-3-319-66824-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics