Nothing Special   »   [go: up one dir, main page]

Skip to main content

Surface Tension Fluid Simulation with Adaptiving Time Steps

  • Conference paper
  • First Online:
Cooperative Design, Visualization, and Engineering (CDVE 2017)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10451))

  • 1218 Accesses

Abstract

In this article, a surface tension fluid simulation algorithm based on IISPH is proposed. Based on the SPH algorithm, the surface tension and the adhesion model are constructed to solve the problem about particle clustering, fluid surface area minimization and interaction between different particles. The method can make the simulation effect of fluid be more in line with the actual physical scene. Furthermore, an adaptive time-stepping method is added in the algorithm. The efficiency of the simulation is significantly improved compared to the constant time-stepping.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Monaghan, J.J.: Smoothed particle hydrodynamics. Ann. Rev. Astron. Astrophys. 30, 543–574 (1992)

    Article  Google Scholar 

  2. Monaghan, J.J.: Smoothed particle hydrodynamics. Rep. Prog. Phys. 68(8), 1703–1759 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Desbrun, M., Gascuel, M.P.: Smoothed particles: a new paradigm for animating highly deformable bodies. In: Proceedings of Eurographics Workshop on Computer Animation and Simulation 1996, pp. 61–76 (1996)

    Google Scholar 

  4. Müller, M., Charypar, D., Gross, M.: Particle-based fluid simulation for interactive applications. In: ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 154–159 (2003)

    Google Scholar 

  5. Becker, M., Teschner, M.: Weakly compressible SPH for free surface flows. In: Symposium on Computer Animation 2007: ACM SIGGRAPH/Eurographics Symposium Proceedings, pp. 209–217 (2007)

    Google Scholar 

  6. Solenthaler, B., Pajarola, R.: Predictive-corrective incompressible SPH. ACM Trans. Graph. 28(3), 40 (2009)

    Article  Google Scholar 

  7. Solenthaler, B., Pajarola, R.: Performance comparison of parallel PCISPH and WCSPH. Technical report, IFI-2009.0, Department of Informatics, University of Zürich (2009)

    Google Scholar 

  8. He, X., Liu, N., Li, S., et al.: Local Poisson SPH for viscous incompressible fluids. Comput. Graph. Forum 31(6), 1948–1958 (2012)

    Article  Google Scholar 

  9. Macklin, M., Mueller, M.: Position based fluids. ACM Trans. Graph. 32(4), 104 (2013)

    Article  Google Scholar 

  10. Cummins, S.J., Rudman, M.: An SPH projection method. J. Comput. Phys. 152(2), 584–607 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  11. Premžoe, S., Tasdizen, T., Bigler, J., et al.: Particle-based simulation of fluids. In: Computer Graphics Forum. Wiley Online Library (2003)

    Google Scholar 

  12. Losasso, F., Talton, J.O., Kwatra, N., et al.: Two-way coupled SPH and particle level set fluid simulation. IEEE Trans. Vis. Comput. Graph. 14(4), 797–804 (2008)

    Article  Google Scholar 

  13. Ihmsen, M., Cornelis, J., Solenthaler, B., et al.: Implicit incompressible SPH. IEEE Trans. Visual. Comput. Graph. 20(3), 426–435 (2014)

    Article  Google Scholar 

  14. Cornelis, J., Ihmsen, M., Peer, A., et al.: IISPH-FLIP for incompressible fluids. In: Computer Graphics Forum. The Eurographics Association and Blackwell Publishing Ltd. (2014)

    Google Scholar 

  15. Tartakovsky, A., Meakin, P.: Modeling of surface tension and contact angles with smoothed particle hydrodynamics. Phys. Rev. E 72(2), 254–271 (2005)

    Article  Google Scholar 

  16. Becker, M., Teschner, M.: Weakly compressible SPH for free surface flows. In: Proceedings of 2007 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 209–217 (2007)

    Google Scholar 

  17. Akinci, N., Akinci, G., Teschner, M.: Versatile surface tension and adhesion for SPH fluids. ACM Trans. Graph. 32(6), 182 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (No. 61572075) and The National Key Research and Development Program of China (Grant Nos. 2016YFB0700502, 2016YFB1001404)

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pengfei Ye or Xiaojuan Ban .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Liu, X., Ye, P., Ban, X., Wang, X. (2017). Surface Tension Fluid Simulation with Adaptiving Time Steps. In: Luo, Y. (eds) Cooperative Design, Visualization, and Engineering. CDVE 2017. Lecture Notes in Computer Science(), vol 10451. Springer, Cham. https://doi.org/10.1007/978-3-319-66805-5_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66805-5_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66804-8

  • Online ISBN: 978-3-319-66805-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics