Nothing Special   »   [go: up one dir, main page]

Skip to main content

Endophytic Bacteria: Role in Phosphate Solubilization

  • Chapter
  • First Online:
Endophytes: Crop Productivity and Protection

Part of the book series: Sustainable Development and Biodiversity ((SDEB,volume 16))

  • 1354 Accesses

  • 66 Citations

Abstract

The worldwide need to increase agricultural and horticultural production from a consistently diminishing and degraded land resource has set remarkable strain in light of agro biological systems. The current methodology is to keep up and enhance agricultural and horticultural productivity only by means of the utilization of chemical fertilizers and pesticides. Despite the fact that the utilization of chemical fertilizers is credited with almost fifty percent of increase in agricultural production yet they are closely associated with environmental contamination and health problems in human beings and animals. Microbial assorted qualities in the soil are viewed as critical for keeping up for the manageability of agriculture and horticulture systems. Nonetheless, the connections between microbial differences and environmental processes are not surely known. Rhizosphere soil strongly affects a range of procedures influencing crop yield. Rhizobacteria that are present inside plant roots, framing more close associations, are known as endophytes. These endophytes are likewise called intracellular plant growth-promoting rhizobacteria (PGPR) microorganisms dwelling inside plant cells, producing nodules and being present inside these specific structures. These incorporate an extensive variety of soil microorganisms framing less formal relationship than the rhizobia-legume advantageous interaction called symbiosis, endophytes may empower plant development, directly or indirectly and incorporate the rhizobia. In this review, we essentially concentrate on the plant development by Phosphate solubilization furthermore by different means. Phosphorus is normally lacking in most characteristic soils since it is settled as insoluble iron and aluminum phosphates in acidic soils or calcium phosphates in soluble soils. Phosphate-solubilizing bacteria (PSB) as inoculants have the ability to convert insoluble forms of phosphorus to an usable form for high plant yields. This chapter mainly focuses on endophytic P-solubilizing bacteria, mechanism of P-solubilization, genetic diversity of P-solubilizers, and mass production of inoculants inoculant production and response of the crop to P-solubilizers bioinoculants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adesemoye AO, Obini M, Ugoji EO (2008) Comparison of plant growth-promotion with Pseudomonas aeruginosa and Bacillus subtilis in three vegetables. Braz J Microbiol 39:423–426

    Google Scholar 

  • Ahemad M (2015) Phosphate-solubilizing bacteria-assisted phytoremediation of metalliferous soils: a review. 3 Biotech 5(2):111–121

    Article  PubMed  Google Scholar 

  • Ahemad M, Khan MS (2010) Phosphate-solubilizing and plant-growth-promoting Pseudomonas aeruginosa PS1 improves green gram performance in quizalafop-p-ethyl and clodinafop amended soil. Arch Environ Con Tox 58:361–372

    Article  CAS  Google Scholar 

  • Ahmad N, Shahab S (2011) Phosphate solubilization: their mechanism genetics and application. Int J Microbiol 9:4408–4412

    Google Scholar 

  • Alagawadi AR, Gaur AC (1992) Inoculation of Azospirillum brasilense and phosphate-solubilizing bacteria on yield of sorghum [Sorghum bicolor (L.) Moench] in dry land. Trop Agric 69:347–350

    Google Scholar 

  • Alstrom S, Burns RG (1989) Cyanide production by rhizobacteria as a possible mechanism of plant growth inhibition. Biol Fert Soils 7:232–238

    Article  Google Scholar 

  • Antoun H, Kloepper JW (2001) Plant growth promoting rhizobacteria (PGPR). In: Brenner S, Miller JH (eds) Encyclopedia of genetics. Academic Press, New York, pp 1477–1480

    Chapter  Google Scholar 

  • Aranda S, Montes MB, Rafael M, Díaz J, Landa Blanca B (2011) Microbial communities associated with the root system of wild olives (Olea europaea L. subsp. europaea var. sylvestris) are good reservoirs of bacteria with antagonistic potential against Verticillium dahlia. Plant Soil 343:329–345

    Article  CAS  Google Scholar 

  • Armarger N (2002) Genetically modified bacteria in agriculture. Biochimie 84:1061–1072

    Article  Google Scholar 

  • Ashrafuzzaman M, Hossen FA, Ismail MR, Hoque MA, Islam MZ, Shahidullah SM, Meon S (2009) Efficiency of plant growth promoting rhizobacteria (PGPR) for the enhancement of rice growth. Afr J Biotechnol 8:1247–1252

    CAS  Google Scholar 

  • Azam F, Memon GH (1996) Soil organisms. In: Bashir E, Bantel R (eds) Soil science. National Book Foundation, Islamabad, pp 200–232

    Google Scholar 

  • Babu-Khan S, Yeo CT, Martin WL, Duron MR, Rogers RD, Goldstein A (1995) Cloning of a mineral phosphate-solubilizing gene Pseudomonas cepacia. Appl Environ Microbiol 61:972–978

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barraquio WL, Segubre EM, Gonzalez MS, Verma SC, James EK, Ladha JK, Tripathi AK (2000) Diazotrophic enterobacteria: what is their role in the rhizosphere? In: Ladha JK, Reddy PM (eds) The quest for nitrogen fixation in rice. IRRI, Manila, pp 93–118

    Google Scholar 

  • Barriuso J, Solano BR (2008) Ecology, genetic diversity and screening strategies of plant growth promoting rhizobacteria (PGPR). J Plant Nutr 1–17

    Google Scholar 

  • Bashan Y, Levanony H (1988) Adsorption of the rhizosphere bacterium Azospirillum brasilense Cd to soil, and and peat particles. J Gen Microbiol 134:1811–1820

    Google Scholar 

  • Beacham IR, Garrett S (1980) Isolation of Escherichia coli mutants (cpdB) deficient in periplasmic 29:39-cyclic phosphodiesterase and genetic mapping of the cpdBlocus. J Gen Microbiol 119:31–34

    CAS  PubMed  Google Scholar 

  • Belimov AA, Kojemiakov AP, Chuvarliyeva CV (1995) Interaction between barley and mixed cultures of nitrogen fixing and phosphate-solubilizing bacteria. Plant Soil 173:29–37

    Article  CAS  Google Scholar 

  • Bhattacharya P, Jain RK (2000) Phosphorus solubilizing biofertilizers in the whirlpool of rock phosphate challenges and opportunities. Fert News 45:45–49

    Google Scholar 

  • Burns DM, Beacham IR (1986) Nucleotide sequence and transcriptional analysis of the Escherichia coli UshA gene, encoding periplasmic UDP-sugar hydrolase (59-nucleotidase): regulation of the UshA gene, and the signal sequence of its encoded protein product. Nucleic Acids Res 14:4325–4342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Butterly CR, Bunemann EK, McNeill AM, Baldock JA, Marschner P (2009) Carbon pulses but not phosphorus pulses are related to decrease in microbial biomass during repeated drying and rewetting of soils. Soil Biol Biochem 41:1406–1416

    Article  CAS  Google Scholar 

  • Carrillo AE, Li CY, Bashan Y (2002) Increased acidification in the rhizosphere of cactus seedlings induced by Azospirillum brasilense. Naturwissenschaften 89:428–432

    Article  CAS  PubMed  Google Scholar 

  • Chabot R, Antoun H, Kloepper JW, Beauchamp CJ (1996) Root colonization of maize and lettuce by bioluminescent Rhizobium leguminosarum biovar. phaseoli. Appl Environ Microbiol 62:2767–2772

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chatli AS, Beri V, Sidhu BS (2008) Isolation and characterisation of phosphate solubilizing microorganisms from the cold desert habitat of Salix alba Linn. in trans Himalayan region of Himachal Pradesh. Indian J Microbiol 48:267–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chauhan A, Guleria S, Walia A, Mahajan R, Verma S, Shirkot CK (2014) Isolation and characterization of Bacillus sp. with their effect on growth of tomato seedlings. Indian J Agr Biochem 27(2):193–201

    CAS  Google Scholar 

  • Chen CR, Condron LM, Davis MR, Sherlock RR (2003) Seasonal changes in soil phosphorus and associated microbial properties under adjacent grassland and forest in New Zealand. Forest Ecol Manag 117:539–557

    Article  Google Scholar 

  • Chen YP, Rekha PD, Arun AB, Shen FT, Lai WA, Young CC (2006a) Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Appl Soil Ecol 34(1):33–41

    Article  Google Scholar 

  • Chen YP, Rekha PD, Arun AB, Shen FT, Lai WA, Young CC (2006b) Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Appl Soil Ecol 34:33–41

    Article  Google Scholar 

  • Chen Z, Ma S, Liu L (2008) Studies on phosphorus solubilizing activity of a strain of phosphobacteria isolated from chestnut type soil in China. Bioresour Technol 99:6702–6707

    Article  CAS  PubMed  Google Scholar 

  • Compant S, Duffy B, Nowak J, Clément C, Barka EA (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71:4951–4959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Compant S, Clément C, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo- and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42:669–678

    Article  CAS  Google Scholar 

  • Dobbelaere S, Vanderleyden Okon Y (2003) Plant growth-promoting effects of diazotrophs in the rhizosphere. Crit Rev Plant Sci 22:107–149

    Article  CAS  Google Scholar 

  • Domenech J, Reddy MS, Kloepper J, Ramos B, Gutierrez-Manero G (2006) Combined application of the biological product LS213 with Bacillus, Pseudomonas or Chryseobacterium for growth promotion and biological control of soil borne diseases in pepper and tomato. Biocontrol 51:245–248

    Google Scholar 

  • Fasim F, Ahmed N, Parson R, Gadd GM (2002) Solubilization of zincsalts by a bacterium isolated from air environment of a tannery. FEMS Microbiol Lett 213:1–6

    Article  CAS  PubMed  Google Scholar 

  • Feng H, Li Y, Liu Q (2013) Endophytic bacterial communities in tomato plants with differential resistance to Ralstonia solanacearum. Afr J Microbiol Res 7:1311–1318

    Article  Google Scholar 

  • Gaiero JR, McCall CA, Thompson KA, Day NJ, Best AS, Dunfield KE (2013) Inside the root microbiome: bacterial root endophytes and plant growth promotion. Am J Bot 100:1738–1750

    Article  PubMed  Google Scholar 

  • Garbaye J (1994) Helper bacteria: a new dimension to the mycorrhizal symbiosis. New Phytol 128:197–210

    Article  Google Scholar 

  • Garbeva P, van Veen JA, van Elsas JD (2003) Predominant Bacillus spp. in agricultural soil under different management regimes detected via PCR-DGGE. Microbial Ecol 45(3):302–316

    Google Scholar 

  • García JAL, Probanza A, Ramos B, Gutiérrez Mañero FJ (2001) Genetic variability of rhizobacteria from wild populations of four Lupinus species based on PCR-RAPDs. J Plant Nutr Soil Sci 164:1–7

    Article  Google Scholar 

  • Gaur AC (1990) Phosphate solubilizing microorganisms as biofertilizer. Omega Scientific Publishers, New Delhi, p 176

    Google Scholar 

  • Gaur AC, Ostwal KP (1972) Influence of phosphate dissolving bacilli on yield and phosphate uptake of wheat crop. Indian J Exp Biol 10:393–394

    CAS  Google Scholar 

  • Gerke J (1992) Phosphate, aluminium and iron in the soil solution of three different soils in relation to varying concentration of citric acid. Zeitschrift Pflanzenernhr Bodenkunde 155:339–343

    Article  CAS  Google Scholar 

  • Glick BR (2003) Phytoremediation: synergistic use of plants and bacteria to clean up the environment. Biotechnol Adv 21:383–393

    Article  CAS  PubMed  Google Scholar 

  • Goldstein AH (1994) Involvement of the quinoprotein glucose dehydrogenase in the solubilization of exogenous phosphates by gram-negative bacteria. In: Gorini A, Torrini A, Yagil E, Silver S (eds) Phosphate in microorganisms: cellular and molecular biology. ASM Press, Washington, pp 197–203

    Google Scholar 

  • Goldstein AH, Liu ST (1987) Molecular cloning and regulation of a mineral phosphate solubilizing gene from Erwinia herbicola. Biotechnol 5:72–74

    CAS  Google Scholar 

  • Groisman EA, Castillo BA, Casadaban MJ (1984) In vivo DNA cloning and adjacent gene fusing with a mini-Mulac bacteriophage containing a plasmid replicon. Proc Natl Acad Sci USA 81:1480–1483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gulati A, Rahi P, Vyas P (2008) Characterization of phosphate-solubilizing fluorescent Pseudomonads from the rhizosphere of seabuckthorn growing in the cold deserts of Himalayas. Curr Microbiol 56:73–79

    Article  CAS  PubMed  Google Scholar 

  • Guleria S, Sharma K, Walia A, Chauhan A, Shirkot CK (2014a) Population and functional diversity of phosphate solubilizing bacteria from Apricot (Prunus Armeniaca) of mid and high regions of Himachal Pradesh. Bioscan 9(2):1435–1443

    CAS  Google Scholar 

  • Guleria S, Walia A, Chauhan A, Shirkot CK (2014b) Genotypic and phenotypic diversity analysis of alkalophilic proteolytic Bacillus sp. associated with rhizosphere of apple trees in trans Himalayan region of Himachal Pradesh. Proc Natl Acad Sci India Sec B: Biol Sci 86(2):331–41

    Google Scholar 

  • Gyaneshwar P, Kumar GN, Parekh LJ, Poole PS (2002) Role of soil microorganisms in improving P nutrition of plants. Plant Soil 245:83–93

    Article  CAS  Google Scholar 

  • Halder AK, Mishra AK, Bhattacharya P, Chakrabarthy PK (1990) Solubilization of rock phosphate by Rhizobium and Bradyrhizobium. J Gen Appl Microbiol 36:81–92

    Article  CAS  Google Scholar 

  • Hallmann J, Quadt-Hallmann A, Mahaffee WF, Kloepper JW (1997) Bacterial endophytes in agricultural crops. Can J Microbiol 43:895–914

    Article  CAS  Google Scholar 

  • Hamdali H, Bouizgarne B, Hafidi M, Lebrihi A, Virolle MJ, Ouhdouch Y (2008) Screening for rock phosphate solubilizing Actinomycetes from Moroccan phosphate mines. Appl Soil Ecol 38:12–19

    Article  Google Scholar 

  • Hameeda B, Harish KRY, Rupela OP, Kumar GN, Reddy G (2006) Effect of carbon substrates on rock phosphate solubilization by bacteria from composts and macrofauna. Curr Microbiol 53:298–302

    Article  CAS  PubMed  Google Scholar 

  • Heijnen CE, Hok-A-Hin CH, van Veen JA (1992) Improvements to the use of bentonite clay as a protective agent, increasing survival levels of bacteria introduced into soil. Soil Biol Biochem 24:533–538

    Article  Google Scholar 

  • Hiltner L (1904) Über neuere Ehrfahrungen und Problem auf dem Gebiet der Bodenbakteriologie unter besonderer Berücksichtigung der Grundüngung und Brache. Arb Dtsch Landwirt Ges 98:59–78

    Google Scholar 

  • Houck DR, Hanners JL, Unkefer CJ (1991) Biosynthesis of pyrroloquinoline quinone. Biosynthetic assembly from glutamate and tyrosine. J Am Chem Soc 113:3162–3166

    Article  CAS  Google Scholar 

  • Hui L, Xiao-Qin W, Jia-Hong R, Jian-Ren Y (2011) Isolation and identification of phosphobacteria in poplar rhizosphere from different regions of china. Pedosphere 21:90–97

    Article  Google Scholar 

  • Igual JM, Valverde A, Cervantes E, Velazquez E (2001) Phosphate solubilizing Bacteria as inoculants for agriculture: use of updated molecular techniques in their study. Agronomie 21:561–568

    Article  Google Scholar 

  • Illmer PA, Schinner F (1995) Solubilization of inorganic calcium phosphates solubilization mechanisms. Soil Biol Biochem 27:257–263

    Article  CAS  Google Scholar 

  • Jacobs H, Boswell GP, Ritz K, Davidson FA, Gadd GM (2002) Solubilization of calcium phosphate as a consequence of carbon translocation by Rhizoctoniasolani. FEMS Microbiol Ecol 40:65–71

    Article  CAS  PubMed  Google Scholar 

  • Jain P, Khichi DS (2014) Phosphate solubilizing microorganism (PSM): an eco-friendly biofertilizer and pollution manager. J Dynamics Agri Res 1(4):23–28

    Google Scholar 

  • Jeffries P, Barea JM (1994) Bioeochemical cycling and arbuscular mycorrhizas in the sustainability of plant-soil system. In: Gianinazzi S, Schüepp H (eds) Impact of arbuscular mycorrhizas on sustainable agriculture and natural ecosystems. Birkhäuser Verlag, Basel, Switzerland, pp 101–115

    Chapter  Google Scholar 

  • Jha A, Jha S, Baidya D (2014) Ecological diversity, mechanism, and biotechnology of phosphate-solubilizing bacteria for enhanced crop production. In: Khan et al (eds) Phosphate solubilizing microorganisms. Springer International Publishing, Switzerland, pp 157–174

    Google Scholar 

  • Jones KA, Burges HD (1998) Technology of formulation and application. In: Burges HD (ed) Formulation of microbial biopesticides: beneficial microorganisms, nematodes and seed treatments. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 7–30

    Chapter  Google Scholar 

  • Jorquera MA, Hernandez MT, Rengel Z, Marschner P, Mora MD (2008) Isolation of culturable phosphor bacteria with both phytate-mineralization and phosphate-solubilization activity from the rhizosphere of plants grown in a volcanic soil. Biol Fert Soils 44:1025–1034

    Article  CAS  Google Scholar 

  • Khan MS, Zaidi A, Wani PA (2009) Role of phosphate solubilizing microorganisms in sustainable agriculture. In: Lictfouse et al (eds) Sustainable agriculture. Springer International Publishing, p 552

    Google Scholar 

  • Khan MS, Zaidi A, Ahmad E (2014a) Mechanism of phosphate solubilization and physiological functions of phosphate-solubilizing microorganisms. In: Khan et al (eds) Phosphate solubilizing microorganisms. Springer International Publishing, Switzerland, pp 31–62

    Google Scholar 

  • Khan MS, Zaidi A, Musarrat J (2014b) Phosphate solubilizing microorganisms: principles and application of microphos technology. Springer International Publishing, Switzerland

    Book  Google Scholar 

  • Kim KY, McDonald GA, Jordan D (1997) Solubilization of hydroxyapatite by Enterobacter agglomerans and cloned Escherichia coli in culture medium. Biol Fert Soils 24:347–352

    Article  CAS  Google Scholar 

  • Kim KY, Jordan D, McDonald GA (1998a) Enterobacter agglomerans, phosphate solubilizing bacteria, and microbial activity in soil: effect of carbon sources. Soil Biol Biochem 30:995–1003

    Article  CAS  Google Scholar 

  • Kim KY, Jordan D, McDonald GA (1998b) Effect of phosphate-solubilizing bacteria and vesicular-arbuscular mycorrhizeae on tomato growth and soil microbial activity. Biol Fert Soils 26:79–87

    Article  CAS  Google Scholar 

  • Kokalis-Burelle N, Vavrina CS, Roskopf EN, Shelby RA (2002) Plant bacteria interactions-strategies and techniques to promote plant growth. Plant Soil 238:257–266

    Article  CAS  Google Scholar 

  • Krishnaraj PU, Goldstein AH (2001) Cloning of a Serratia marcescence DNA fragment that induces quinoprotein glucose dehydrogenase mediated gluconic acid production Escherichia coli in the presence of stationary phase Serratia marcescence. FEMA Microbiol Lett 205(2):215–220

    Article  CAS  Google Scholar 

  • Krishnaraj PU, Khanuja SPS, Sadashivam KV (1998) Mineral phosphate solubilization (MPS) and mps genes-components in eco-friendly P fertilization. Abstracts of Indo US Workshop on Application of Biotechnology for Clean Environment and Energy, National Institute of Advanced Studies, Bangalore, p 27

    Google Scholar 

  • Kucey RMN (1983) Phosphate solubilizing bacteria and fungi in various cultivated and virgin Alberta soils. Can J Soil Sci 63:671–678

    Article  CAS  Google Scholar 

  • Kumar P, Dubey RC, Maheshwari DK (2012) Bacillus strains isolated from rhizosphere showed plant growth promoting and antagonistic activity against phytopathogens. Microbiol Res 167:493–499

    Article  CAS  PubMed  Google Scholar 

  • Kumar V, Pathak DV, Dudeja SS, Saini R, Narula S, Anand RC (2013a) Legume nodule endophytes more diverse than endophytes from roots of legumes or non-legumes in soils of Haryana. India. J Microbiol Biotechnol Res 3(3):83–92

    Google Scholar 

  • Kumar D, Shivay YS, Dhar S, Kumar C, Prasad R (2013b) Rhizospheric flora and the influence of agronomic practices on them-a review. Proc Natl Acad Sci India Sect B: Biol Sci 83(1):1–14

    Google Scholar 

  • Kumar A, Guleria S, Mehta P, Walia A, Chauhan A, Shirkot CK (2015) Plant growth promoting traits of Phosphate solubilizing rhizobacteria isolated from sea buckthorn growing in cold desert region of trans-Himalayas and evaluating their potential on growth of tomato seedlings. Acta Physiol Plant 37(3):1–12

    Article  CAS  Google Scholar 

  • Kundu BS, Gaur AC (1981) Effect of single and composite cultures on rock phosphate solubilization. Haryana Agric Univ J Res 11:559–562

    Google Scholar 

  • Kundu BS, Gaur AC (1984) Rice response to inoculation with N2-fixing and P-solubilizing microorganisms. Plant Soil 79:227–234

    Article  CAS  Google Scholar 

  • Kundu BS, Nehra K, Yadav R, Tomar M (2009) Biodiversity of phosphate solubilizing bacteria in rhizosphere of chickpea, mustard and wheat grown in different regions of Haryana. Ind J Microbiol 49:120–127

    Article  CAS  Google Scholar 

  • Lifshitz R, Kloepper JW, Kozlowski M, Simonson C, Carlson J, Tipping EM, Zalesca I (1987) Growth promotion of canola (rapeseed) seedlings by a strain of Psedomonas putida under gnotobiotic conditions. Can J Microbiol 33:390–395

    Article  Google Scholar 

  • Lynch JM (1990) The Rhizosphere. John Wiley & Sons Ltd, Chichester, p 458

    Google Scholar 

  • Martins A, Kimura O, Goi SR, Baldani JI (2004) Effect of coinoculation of plant growth promoting rhizobacteria and rhizobia on development of common bean plants (Phaseolus vulgaris, L.). Floresta e Ambiente 11:33–39

    Google Scholar 

  • Mehta P, Walia A, Chauhan A, Shirkot CK (2011) Accelerated solubilization of inorganic phosphate and production of antifungal activity in soil by plant growth promoting rhizobacteria isolated from apple rhizosphere. J Mycol Plant Pathol 41(3):342–349

    Google Scholar 

  • Mehta P, Walia A, Chauhan A, Kulshrestha S, Shirkot CK (2013a) Phosphate solubilization and plant growth promoting potential by stress tolerant Bacillus sp. isolated from rhizosphere of apple orchards in trans Himalayan region of Himachal Pradesh. Ann Appl Biol 163:430–443

    Article  CAS  Google Scholar 

  • Mehta P, Walia A, Chauhan A, Shirkot CK (2013b) Plant growth promoting traits of phosphate-solubilizing rhizobacteria isolated from apple trees in trans Himalayan region of Himachal Pradesh. Arch Microbiol 195:357–369

    Article  CAS  PubMed  Google Scholar 

  • Mehta P, Walia A, Kulshrestha S, Chauhan A, Shirkot CK (2013c) Efficiency of plant growth-promoting P-solubilizing Bacillus circulans CB7 for enhancement of tomato growth under net house condition. J Basic Microbiol 53:1–12

    Article  Google Scholar 

  • Mehta P, Walia A, Kakkar N, Shirkot CK (2014) Tricalcium phosphate solubilisation by new endophyte Bacillus methylotrophicus CKAM isolated from apple root endosphere and its plant growth-promoting activities. Acta Physiol Plant 36:2033–2045

    Article  CAS  Google Scholar 

  • Mehta P, Walia A, Shirkot CK (2015) Functional diversity of phosphate solubilizing plant growth promoting rhizobacteria isolated from apple trees in the trans Himalayan region of Himachal Pradesh. India. Biol Agr Hort 31(4):265–288

    Article  Google Scholar 

  • Micallef SA, Shiaris MP, Colon-Carmona A (2009) Influence of Arabidiopsis thaliana accessions on rhizobacterial communities and natural variation in root exudates. J Experiment Botany 60:1729–1742

    Article  CAS  Google Scholar 

  • Mittal S, Johri Bhavdish N (2007) Assessment of rhizobacterial diversity of Triticum aestivum and Eleusine coracana from Northern region of India. Curr Sci 93:1530–1537

    Google Scholar 

  • Murty MG, Ladha JK (1988) Influence of Azospirillum inoculation on the mineral uptake and growth of rice under hydroponic conditions. Plant Soil 108:281–285

    Article  Google Scholar 

  • Musarrat J, Khan MS (2014) Factors affecting phosphate-solubilizing activity of microbes: current status. In: Khan et al (eds) Phosphate solubilizing microorganisms. Springer International Publishing, pp 63–85

    Google Scholar 

  • Nannipieri P, Giagnoni L, Landi L, Renella G (2011) Role of phosphatase enzymes in soil. In: Bunemann E, Oberson A, Frossard E (eds) Phosphorus in action: biological processes in soil phosphorus cycling, soil biology, vol 26. Springer, Heidelberg, pp 251–244

    Google Scholar 

  • Olsen PE, Rice WA, Bordeleau LM, Biederbeck VO (1994) Analysis and regulation of legume inoculants in Canada: the need for an increase in standards. Plant Soil 161:127–134

    Article  Google Scholar 

  • Omar SA (1998) The role of rock phosphate solubilizing fungi and vesicular arbuscular mycorrhiza (VAM) in growth of wheat plants fertilized with rock phosphate. World J Microbiol Biotechnol 14:211–219

    Article  CAS  Google Scholar 

  • Otieno NA, Culhane J, Germaine K, Brazil D, Ryan D, Dowling D (2012) Phosphate solubilisation and gluconic acid production by endophytic bacterial strains and ability to promote plant growth in oil seed rape (Brassica napus). In: 28th New phytologists symposium: functions and ecology of the plant microbiome 2012. New Phytologist Organisation

    Google Scholar 

  • Otieno NA, Lally RD, Kiwanuka S, Lloyd A, Ryan D, Germaine KJ, Dowling DN (2015) Plant growth promotion induced by phosphate solubilizing endophytic Pseudomonas isolates. Frontiers Microbiol 6:745

    Google Scholar 

  • Pandey P, Maheshwari DK (2006) Two species microbial consortium for growth promotion of Cajanus cajan. Curr Sci 92(8): 1137–1142

    Google Scholar 

  • Panhwar QA, Jusop S, Naher UA, Othman R, Razi MI (2013) Application of potential phosphate-solubilizing bacteria and organic acids on phosphate solubilization from phosphate rock in aerobic rice. The Scientific World J ID 272409. doi:10.1155/2013/272409

  • Pankaj T, Sa T (2008) Pseudomonas corrugate (NRRLB-30409) mutants increased phosphate solubilization, organic acid production, plant growth at lower temperature. Curr Micobiol 56:140–144

    Google Scholar 

  • Parker DR, Reichmann SM, Crowley DE (2005) Metal chelation in the rhizosphere. In: Zobel RW (ed) Roots and soil management: interactions between roots and the soil. Agronomy Monograph, vol 48. American Society of Agronomy, Madison, pp 57–93

    Google Scholar 

  • Parks EJ, Olson GJ, Brinckman FE, Baldi F (1990) Characterization by high performance liquid chromatography (HPLC) of the solubilization of phosphorus in iron ore by a fungus. J Ind Microbiol Biotechnol 5:183–189

    CAS  Google Scholar 

  • Patel HA, Patel RK, Khristi SM, Parikh K, Rajendran G (2012) Isolation and characterization of bacterial endophytes from Lycopersicon esculentum plant and their plant growth promoting characteristics. Nepal J Biotechnol 2(1):37–52

    Article  Google Scholar 

  • Perotti R (1926) On the limits of biological enquiry in soil science. Proc Int Soc Soil Sci 2:146–161

    Google Scholar 

  • Piromyou P, Buranabanyat B, Tantasawat P, Tittabutr P, Boonkerd N, Teaumroong N (2010) Effect of plant growth promoting rhizobacteria (PGPR) inoculation on microbial community structure in rhizosphere of forage corn cultivated in Thailand. Eur J Soil Biol 47:44–54

    Article  CAS  Google Scholar 

  • Pond JL, Eddy CK, Mackenzie KF, Conway T, Borecky DJ, Ingram LO (1989) Cloning, sequencing and characterization of the principal acid phosphatase, PhoC product, from Zymomonas mobilis. J Bacteriol 171:767–774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Posada F, Vega FE (2005) Establishment of the fungal entomopathogen Beauveria bassiana (Ascomycota: Hypocreales) as an endophyte in cocoa seedlings (Theobroma cacao). Mycologia 97:1195–1200

    Article  PubMed  Google Scholar 

  • Pradel E, Boquet PL (1988) Acid phosphatases of Escherichia coli: molecular cloning and analysis of Agp, the structural gene for a periplasmic acid glucose phosphatase. J Bacteriol 170:4916–4923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ray J, Bagyaraj DJ, Manjunath A (1981) Influence of soil inoculation with versicular arbuscular mycorrhizal (VAM) and a phosphate dissolving bacteria on plant growth and 32P uptake. Soil Biol Biochem 13:105–8

    Google Scholar 

  • Reyes I, Bernier L, Simard RR, Antoun H (1999) Effect of nitrogen source on the solubilization of different inorganic phosphates by an isolate of Penicillium rugulosum and two UV-induced mutants. FEMS Microbiol Ecol 28:281–290

    Article  CAS  Google Scholar 

  • Reyes I, Bernier L, Antoun H (2002) Rock phosphate solubilization and colonization of maize rizosphere by wild and genetically modified strains of Penicillium rugulosum. Microb Ecol 44:39–48

    Article  CAS  PubMed  Google Scholar 

  • Reyes I, Valery A, Valduz Z (2006) Phosphate-solubilizing micro-organisms isolated from rhizospheric and bulk soils of colonizer plants at an abandoned rock phosphate mine. Plant Soil 287:69–75

    Article  CAS  Google Scholar 

  • Riccio ML, Rossolini GM, Lombardi G, Chiesurin A, Satta G (1997) Expression cloning of different bacterial phosphatase-encoding genes by histochemical screening of genomic libraries onto an indicator medium containing phenolphthalein diphosphate and metyl green. J Appl Bacteriol 82:177–185

    Article  CAS  Google Scholar 

  • Richardson AE (1994) Soil microorganisms and phosphorus availability. In: Pankhurst CE, Doube BM, Grupta VVSR, Grace PR (eds) Soil biota: management in sustainable farming systems. CSIRO, Melbourne, Australia, pp 50–62

    Google Scholar 

  • Richardson AE, Simpson RJ (2011) Soil microorganisms mediating phosphorus availability. Plant Physiol 156:989–996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richardson AE, Hocking PJ, Simpson RJ, George TS (2009) Plant mechanisms to optimize access to soil phosphorus. Crop Pasture Sci 60:124–143

    Article  CAS  Google Scholar 

  • Rivas R, Peix A, Mateos PF, Trujillo ME, Martinez-Molina E, Velazqueze E (2006) Biodiversity of populations of phosphate solubilizing rhizobia that nodulates chickpea in different spanish soils. Plant Soil 287:23–33

    Article  CAS  Google Scholar 

  • Rodriguez H, Fraga R, Gonzalez T, Bashan Y (2006) Genetics of phosphate solubilization and its potential applications for improving plant-growth promoting bacteria. Plant Soil 287:15–21

    Article  CAS  Google Scholar 

  • Rodriguez-Navarro DN, Temprano F, Orive R (1991) Survival of Rhizobium sp. (Hedysarum coronarium L.) on peat-based inoculants and inoculated seeds. Soil Biol Biochem 23:375–379

    Article  Google Scholar 

  • Rossolini GM, Shippa S, Riccio ML, Berlutti F, Macaskie LE, Thaller MC (1998) Bacterial nonspecific acid phosphatases: physiology, evolution, and use as tools in microbial biotechnology. Cell Mol Life Sci 54:833–850

    Article  CAS  PubMed  Google Scholar 

  • Ryan RP, Germaine K, Franks A, Ryan DJ (2008) Bacterial endophytes: recent developments and applications. FEMS Microbiol Lett 278:1–9

    Article  CAS  PubMed  Google Scholar 

  • Sagervanshi A, Kumara P, Nagee A, Kumar A (2012) Isolation and characterization of phosphate solubilizing bacteria from anand agriculture soil. Int J life Sci Pharma Res 2:256–266

    CAS  Google Scholar 

  • Sahoo HR, Gupta N (2014) Phosphate-solubilizing fungi: impact on growth and development of economically important plants. In: Khan et al (eds) Phosphate solubilizing microorganisms. Springer International Publishing, pp 87–111

    Google Scholar 

  • Saini R, Kumar V, Dudeja SS, Pathak DV (2015) Beneficial effects of inoculation of endophytic bacterial isolates from roots and nodules in chickpea. Int J Curr Microbiol App Sci 4(10):207–221

    Google Scholar 

  • Scheffer F, Schachtschasel P (1992) Lehrbuch der Bodenkunde. Ferdinand Enke Verlag, Stuttgart

    Google Scholar 

  • Sharma K, Dak G, Agrawal A, Bhatnagar M, Sharma R (2007) Effect of phosphate solubilizing bacteria on the on the germination of Cicer arietinum seeds and seedling growth. J Herb Medi Toxicol 1:61–63

    Google Scholar 

  • Sharma B, Seema SZ, Trivedi R, Mrugesh H, Thivakaran GA (2013) Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. Springer Plus 2:587

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sharma R, Walia A, Chauhan A, Shirkot CK (2015) Multi-trait plant growth promoting rhizobacteria from tomato rhizosphere and evaluation of their potential as bioinoculants. Appl Biol Res 17(2):1–12

    Article  Google Scholar 

  • Sharma R, Sharma P, Chauhan A, Walia A, Shirkot CK (2016) Plant growth promoting activities of rhizobacteria isolated from Podophyllum hexandrum growing in North-West region of Himalayas. Proc Nat Acad Sci, India Sec B: Biol Sci 1–5. doi:10.1007/s40011-016-0722-2

  • Sims JT, Pierzynski GM (2005) Chemistry of phosphorus in soil. In: Tabatabai AM, Sparks DL (eds) Chemical processes in soil, SSSA book series 8. SSSA, Madison, pp 151–192

    Google Scholar 

  • Smith RS (1995) Inoculant formulations and applications to meet changing needs. In: Tikhonovich IA, Provorov NA, Romanov VI, Newton WE (eds) Nitrogen fixation: fundamentals and applications. Kluwer Academic Publishers, The Netherlands, Dordrecht, pp 653–657

    Chapter  Google Scholar 

  • Smith JH, Allison FE, Soulides DA (1962) Phosphobacteria as a soil inoculant. Tech US Dept Agricult Bul 1:63–70

    Google Scholar 

  • Sobral JK, Arauja WL, Mendes R, Geraldi IO, Kleiner AAP, Azevedo JL (2004) Isolation and characterization of soybean- associated bacteria and their potential for plant growth promotion. Environ Microbiol 6:1244–1251

    Article  CAS  Google Scholar 

  • Stark C, Condron LM, Stewart A, Di HJ, O’Callaghan M (2007) Influence of organic and mineral amendments on microbial soil properties and processes. Appl Soil Ecol 35:79–93

    Article  Google Scholar 

  • Stephens JHG, Rask HM (2000) Inoculant production and formulation. Field Crops Res. 65:249–258

    Article  Google Scholar 

  • Sturz AV, Christie BR, Nowak J (2000) Bacterial endophytes: potential role in developing sustainable systems of crop production. CRC Crit Rev Plant Sci 19:1–30

    Article  Google Scholar 

  • Subba Rao NS (1982) Advances in agricultural microbiology. Oxford and IBH Publications Company, India, pp 229–305

    Google Scholar 

  • Swaby R, Sperber JI (1958) Phosphate dissolving microorganisms in the rhizosphere of legume, nutrition of legumes; Proc Univ Nottingham 5th Easter Sch Agril Sci (CSIRO Adelaide). Soils & Fert 22(286):289–294

    Google Scholar 

  • Tang WH, Yang H (1997) Research and application of biocontrol of plant diseases and PGPR in China. In: Ogoshi A, Kobayashi K, Homma Y, Kodama F, Kondo N, Akino S (eds) Plant Growth-Promoting Rhizobacteria-present status and future prospects. Faculty of Agriculture, Hokkaido University, Sapporo, Japan, pp 4–9

    Google Scholar 

  • Thaller MC, Berlutti F, Schippa S, Lombardi G, Rossolini GM (1994) Characterization and sequence of PhoC, the principal phosphate-irrepressible acid phosphatase of Morganella morganii. Microbiology 140:1341–1350

    Article  CAS  PubMed  Google Scholar 

  • Timmusk S, Nicander B, Granhall U, Tillberg E (1999) Cytokinin production by Paenibacilluspolymyxa. Soil Biol Biochem 31(13):1847–1852

    Article  CAS  Google Scholar 

  • Trevors JT, Van Elsas JD, Lee H, Van Overbeek LS (1992) Use of alginate and other carriers for encapsulation of microbial cells for use in soil. Microb Releases 1:61–69

    Google Scholar 

  • Trolove SN, Hedley MJ, Kirk GJD, Bolan NS, Loganathan P (2003) Progress in selected areas of rhizosphere research on P acquisition. Aust J Soil Res 41:471–499

    Article  Google Scholar 

  • Van Elsas JD, Van Overbeek LS (1993) Bacterial responses to soil stimuli. In: Kjelleberg S (ed) Starvation in bacteria. Plenum Press, New York, pp 55–79

    Chapter  Google Scholar 

  • Van Elsas JD, Kijkstra AR, Govaert JM, Van Veen JA (1986) Survival of Pseudomonas fluorescens and Bacillus subtilis introduced into two soils of different texture in field microplots. FEMS Microbiol Ecol 38:151–160

    Article  Google Scholar 

  • Van Schie BJ, De Mooy OH, Linton JD, Van Dijken JP, Kuenen JG (1987) PQQ-dependent production of gluconic acid by Acinetobacter, Agrobacterium and Rhizobium species. J Gen Microbiol 133:867–875

    Google Scholar 

  • Vassilev N, Vassileva M, Azcon R, Medina A (2001) Preparation of gel-entrapped mycorrhizal inoculum in the presence or absence of Yarrowia lypolytica. Biotechnol Lett 23:907–909

    Article  CAS  Google Scholar 

  • Vassilev N, Vassileva M, Nikolaeva I (2006) Simultaneous P-solubilizing and biocontrol activity of microorganisms: potentials and future trends. Appl Microbiol Biotechnol 71:137–144

    Article  CAS  PubMed  Google Scholar 

  • Vazquez P, Holguin G, Puente ME, Lopez-Cortez A, Bashan Y (2000) Phosphate-solubilizing microorganisms associated with the rhizosphere of mangroves in a semiarid coastal lagoon. Biol Fert Soils 30:460–468

    Article  CAS  Google Scholar 

  • Villegas J, Fortin JA (2002) Phosphorus solubilization and pH changes as a result of the interactions between soil bacteria and arbuscular mycorrhizal fungi on a medium containing NO3 as nitrogen source. Can J Bot 80:571–576

    Article  CAS  Google Scholar 

  • Vendan RT, Lee SH, Yu YJ, Rhee YH (2012) Analysis of bacterial community in the ginseng soil using denaturing gradient gel electrophoresis (DGGE). Ind Microbiol 52:286–288

    Google Scholar 

  • Walia A, Shirkot CK (2012) Screening of PGPR to promote early growth of tomato seedlings. Lap Lambert Academic Publishing, Deutschland, Germany, pp 1–114

    Google Scholar 

  • Walia A, Mehta P, Chauhan A, Shirkot CK (2013a) Antagonistic activity of plant growth promoting rhizobacteria isolated from tomato rhizosphere against soil borne fungal plant pathogens. Int J Agr Environ Biotechnol 6(4):587–595

    Google Scholar 

  • Walia A, Mehta P, Chauhan A, Shirkot CK (2013b) Effect of Bacillus sp. strain CKT1 as inoculum on growth of tomato seedlings under net house conditions. Proc Natl Acad Sci, India Sect B: Biol Sci 84(1):144–155

    Google Scholar 

  • Welbaum G, Sturz AV, Dong Z, Nowak J (2004) Fertilizing soil microorganisms to improve productivity of agroecosystems. Crit Rev Plant Sci 23:175–193

    Article  CAS  Google Scholar 

  • Whitelaw MA (2000) Growth promotion of plants inoculated with phosphate solubilizing fungi. Adv Agron 69:99–151

    Article  CAS  Google Scholar 

  • Whitelaw MA, Harden TJ, Helyar KR (1999) Phosphate solubilization in solution culture by the soil fungus Penicillium radicum. Soil Biol Biochem 32:655–665

    Article  Google Scholar 

  • Yadav BK, Tarafdar JC (2011) Penicillium purpurogenum, unique P mobilizers in arid agro-ecosystems. Arid Land Res Manag 25(1):87–99

    Article  CAS  Google Scholar 

  • Yamada M, Sumi K, Matsushita K, Adachi O, Yamada Y (1994) Topological analysis of quinoprotein glucose dehydrogenase in Escherichia coli and its ubiquinone-binding site. J Biol Chem 268:12812–12817

    Google Scholar 

  • Yazdani M, Bahmanyar M Ali, Pirdashti H, Esmaili M Ali (2009) Effect of phosphate solubilization microorganisms (PSM) and plant growth promoting rhizobacteria (PGPR) on yield and yield components of corn (Zea mays L.). World Acad Sci, Engin Technol 49:90–92

    Google Scholar 

  • Yi Y, Huang W, Ge Y (2008) Exopolysaccharide: a novel important factor in the microbial dissolution of tricalcium phosphate. World J Microbiol Biotechnol 24:1059–1065

    Article  CAS  Google Scholar 

  • Zaidi A, Khan MS, Ahemad M, Oves M, Wani PA (2009a) Recent advances in plant growth promotion by phosphate-solubilizing microbes. In: Khan MS et al (eds) Microbial strategies for crop improvement. Springer-Verlag, Berlin Heidelberg, pp 23–50

    Chapter  Google Scholar 

  • Zaidi A, Khan MS, Ahemad M, Oves M (2009b) Plant growth promotion by phosphate solubilizing bacteria. Acta Microbiol Immunolog Hung 56(3):263–284

    Article  CAS  Google Scholar 

  • Zaidi A, Ahmad E, Khan MS (2014) Role of phosphate-solubilizing microbes in the management of plant diseases. In: Khan et al (eds) Phosphate solubilizing microorganisms. Springer International Publishing, Switzerland, pp 225–256

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Preeti Mehta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Walia, A., Guleria, S., Chauhan, A., Mehta, P. (2017). Endophytic Bacteria: Role in Phosphate Solubilization. In: Maheshwari, D., Annapurna, K. (eds) Endophytes: Crop Productivity and Protection. Sustainable Development and Biodiversity, vol 16. Springer, Cham. https://doi.org/10.1007/978-3-319-66544-3_4

Download citation

Publish with us

Policies and ethics