Abstract
The practical success of Boolean Satisfiability (SAT) solvers stems from the CDCL (Conflict-Driven Clause Learning) approach to SAT solving. However, from a propositional proof complexity perspective, CDCL is no more powerful than the resolution proof system, for which many hard examples exist. This paper proposes a new problem transformation, which enables reducing the decision problem for formulas in conjunctive normal form (CNF) to the problem of solving maximum satisfiability over Horn formulas. Given the new transformation, the paper proves a polynomial bound on the number of MaxSAT resolution steps for pigeonhole formulas. This result is in clear contrast with earlier results on the length of proofs of MaxSAT resolution for pigeonhole formulas. The paper also establishes the same polynomial bound in the case of modern core-guided MaxSAT solvers. Experimental results, obtained on CNF formulas known to be hard for CDCL SAT solvers, show that these can be efficiently solved with modern MaxSAT solvers.
This work was supported by FCT funding of post-doctoral grants SFRH/BPD/103609/2014, SFRH/BPD/120315/2016, and LASIGE Research Unit, ref. UID/CEC/00408/2013.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
An extended version of the paper containing additional detail and proofs can be found in [42].
- 2.
- 3.
This section studies the original pairwise encoding of \({{\text {PHP}}}^{m+1}_m\). However, a similar argument can be applied to \({{\text {PHP}}}^{m+1}_m\) provided any encoding of AtMost1 constraints \({\mathcal {M}}_j\), as confirmed by the experimental results in Sect. 5.2.
- 4.
- 5.
The notation \(\Phi \vdash _{{1}}\bot \) indicates that inconsistency (i.e. a falsified clause) is derived by unit propagation on the propositional encoding of \(\Phi \). This is the case with existing encodings of AtMost k constraints.
- 6.
The discussion focuses on the results of the best performing representatives. Solvers that are missing in the discussion are meant to be “dominated” by their representatives.
- 7.
- 8.
The two tested versions of cc-opb behave almost identically with a minor advantage of linear search. As a result, cc-opb stands for the linear search version of the solver.
- 9.
We chose LMHS (not MaxHS) because it has a command-line option to disable eq-seeding.
- 10.
Note that all the shown cactus plots below scale the Y axis logarithmically.
References
Abío, I., Nieuwenhuis, R., Oliveras, A., Rodríguez-Carbonell, E.: BDDs for pseudo-boolean constraints – revisited. In: Sakallah, K.A., Simon, L. (eds.) SAT 2011. LNCS, vol. 6695, pp. 61–75. Springer, Heidelberg (2011). doi:10.1007/978-3-642-21581-0_7
Ansótegui, C., Bonet, M.L., Levy, J.: SAT-based MaxSAT algorithms. Artif. Intell. 196, 77–105 (2013)
Ansótegui, C., Didier, F., Gabàs, J.: Exploiting the structure of unsatisfiable cores in MaxSAT. In: IJCAI, pp. 283–289 (2015)
Asín, R., Nieuwenhuis, R., Oliveras, A., Rodríguez-Carbonell, E.: Cardinality networks and their applications. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 167–180. Springer, Heidelberg (2009). doi:10.1007/978-3-642-02777-2_18
Asín, R., Nieuwenhuis, R., Oliveras, A., Rodríguez-Carbonell, E.: Cardinality networks: a theoretical and empirical study. Constraints 16(2), 195–221 (2011)
Atserias, A., Kolaitis, P.G., Vardi, M.Y.: Constraint propagation as a proof system. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 77–91. Springer, Heidelberg (2004). doi:10.1007/978-3-540-30201-8_9
Audemard, G., Katsirelos, G., Simon, L.: A restriction of extended resolution for clause learning SAT solvers. In: AAAI (2010)
Audemard, G., Lagniez, J.-M., Simon, L.: Improving glucose for incremental SAT solving with assumptions: application to MUS extraction. In: Järvisalo, M., Van Gelder, A. (eds.) SAT 2013. LNCS, vol. 7962, pp. 309–317. Springer, Heidelberg (2013). doi:10.1007/978-3-642-39071-5_23
Bailleux, O., Boufkhad, Y.: Efficient CNF encoding of boolean cardinality constraints. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 108–122. Springer, Heidelberg (2003). doi:10.1007/978-3-540-45193-8_8
Bailleux, O., Boufkhad, Y., Roussel, O.: New encodings of pseudo-boolean constraints into CNF. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 181–194. Springer, Heidelberg (2009). doi:10.1007/978-3-642-02777-2_19
Beame, P., Pitassi, T.: Simplified and improved resolution lower bounds. In: FOCS, pp. 274–282 (1996)
Berre, D.L., Parrain, A.: The Sat4j library, release 2.2. JSAT 7(2–3), 59–64 (2010)
Biere, A.: Picosat essentials. JSAT 4(2–4), 75–97 (2008)
Biere, A.: Lingeling, plingeling and treengeling entering the SAT competition 2013. In: Balint, A., Belov, A., Heule, M., Järvisalo, M. (eds.) Proceedings of SAT Competition 2013, vol. B-2013-1, pp. 51–52. Department of Computer Science Series of Publications B, University of Helsinki (2013)
Biere, A.: Lingeling essentials, a tutorial on design and implementation aspects of the SAT solver lingeling. In: Pragmatics of SAT Workshop, p. 88 (2014)
Biere, A., Berre, D., Lonca, E., Manthey, N.: Detecting cardinality constraints in CNF. In: Sinz, C., Egly, U. (eds.) SAT 2014. LNCS, vol. 8561, pp. 285–301. Springer, Cham (2014). doi:10.1007/978-3-319-09284-3_22
Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability. Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press, Amsterdam (2009)
Bonet, M.L., Levy, J., Manyà, F.: Resolution for Max-SAT. Artif. Intell. 171(8–9), 606–618 (2007)
Bryant, R.E., Beatty, D., Brace, K., Cho, K., Sheffler, T.: COSMOS: a compiled simulator for MOS circuits. In: DAC, pp. 9–16 (1987)
Buss, S.R.: Polynomial size proofs of the propositional pigeonhole principle. J. Symb. Log. 52(4), 916–927 (1987)
Buss, S.R., Turán, G.: Resolution proofs of generalized pigeonhole principles. Theor. Comput. Sci. 62(3), 311–317 (1988)
Chatalic, P., Simon, L.: Multiresolution for SAT checking. Int. J. Artif. Intell. Tools 10(4), 451–481 (2001)
Chvátal, V., Szemerédi, E.: Many hard examples for resolution. J. ACM 35(4), 759–768 (1988)
Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided abstraction refinement for symbolic model checking. J. ACM 50(5), 752–794 (2003)
Codish, M., Zazon-Ivry, M.: Pairwise cardinality networks. In: Clarke, E.M., Voronkov, A. (eds.) LPAR 2010. LNCS (LNAI), vol. 6355, pp. 154–172. Springer, Heidelberg (2010). doi:10.1007/978-3-642-17511-4_10
Cook, S.A.: A short proof of the pigeon hole principle using extended resolution. ACM SIGACT News 8(4), 28–32 (1976)
Cook, S.A., Reckhow, R.A.: The relative efficiency of propositional proof systems. J. Symb. Log. 44(1), 36–50 (1979)
Cook, W.J., Coullard, C.R., Turán, G.: On the complexity of cutting-plane proofs. Discrete Appl. Math. 18(1), 25–38 (1987)
Davies, J., Bacchus, F.: Solving MAXSAT by solving a sequence of simpler SAT instances. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp. 225–239. Springer, Heidelberg (2011). doi:10.1007/978-3-642-23786-7_19
Davies, J., Bacchus, F.: Exploiting the power of mip solvers in maxsat. In: Järvisalo, M., Van Gelder, A. (eds.) SAT 2013. LNCS, vol. 7962, pp. 166–181. Springer, Heidelberg (2013). doi:10.1007/978-3-642-39071-5_13
Davies, J., Bacchus, F.: Postponing optimization to speed up MAXSAT solving. In: Schulte, C. (ed.) CP 2013. LNCS, vol. 8124, pp. 247–262. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40627-0_21
Dowling, W.F., Gallier, J.H.: Linear-time algorithms for testing the satisfiability of propositional Horn formulae. J. Log. Program. 1(3), 267–284 (1984)
Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24605-3_37
Eén, N., Sörensson, N.: Translating pseudo-Boolean constraints into SAT. JSAT 2(1–4), 1–26 (2006)
Jan Elffers’ personal webpage. http://www.csc.kth.se/~elffers
Fu, Z., Malik, S.: On solving the partial MAX-SAT problem. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 252–265. Springer, Heidelberg (2006). doi:10.1007/11814948_25
Goldberg, E.: Testing satisfiability of CNF formulas by computing a stable set of points. In: Voronkov, A. (ed.) CADE 2002. LNCS (LNAI), vol. 2392, pp. 161–180. Springer, Heidelberg (2002). doi:10.1007/3-540-45620-1_15
Goldberg, E.: Testing satisfiability of CNF formulas by computing a stable set of points. Ann. Math. Artif. Intell. 43(1), 65–89 (2005)
Haken, A.: The intractability of resolution. Theor. Comput. Sci. 39, 297–308 (1985)
Huang, J.: Extended clause learning. Artif. Intell. 174(15), 1277–1284 (2010)
IBM ILOG: CPLEX optimizer 12.7.0 (2016). http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer
Ignatiev, A. Morgado, A., Marques-Silva, J.: On tackling the limits of resolution in SAT solving. CoRR, abs/1705.01477 (2017). https://arxiv.org/abs/1705.01477
Jabbour, S., Marques-Silva, J., Sais, L., Salhi, Y.: Enumerating prime implicants of propositional formulae in conjunctive normal form. In: Fermé, E., Leite, J. (eds.) JELIA 2014. LNCS (LNAI), vol. 8761, pp. 152–165. Springer, Cham (2014). doi:10.1007/978-3-319-11558-0_11
Jovanović, D., Moura, L.: Cutting to the chase solving linear integer arithmetic. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS (LNAI), vol. 6803, pp. 338–353. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22438-6_26
Jovanovic, D., de Moura, L.M.: Cutting to the chase - solving linear integer arithmetic. J. Autom. Reason. 51(1), 79–108 (2013)
Koshimura, M., Zhang, T., Fujita, H., Hasegawa, R.: QMaxSAT: a partial Max-SAT solver. JSAT 8(1/2), 95–100 (2012)
Larrosa, J., Heras, F., de Givry, S.: A logical approach to efficient Max-SAT solving. Artif. Intell. 172(2–3), 204–233 (2008)
Manquinho, V.M., Flores, P.F., Silva, J.P.M., Oliveira, A.L.: Prime implicant computation using satisfiability algorithms. In: ICTAI, pp. 232–239 (1997)
Marques-Silva, J., Ignatiev, A., Mencía, C., Peñaloza, R.: Efficient reasoning for inconsistent horn formulae. In: Michael, L., Kakas, A. (eds.) JELIA 2016. LNCS (LNAI), vol. 10021, pp. 336–352. Springer, Cham (2016). doi:10.1007/978-3-319-48758-8_22
Marques-Silva, J., Planes, J.: On using unsatisfiability for solving maximum satisfiability. CoRR, abs/0712.1097 (2007). https://arxiv.org/abs/0712.1097
Martins, R., Joshi, S., Manquinho, V., Lynce, I.: Incremental cardinality constraints for MaxSAT. In: O’Sullivan, B. (ed.) CP 2014. LNCS, vol. 8656, pp. 531–548. Springer, Cham (2014). doi:10.1007/978-3-319-10428-7_39
Martins, R., Manquinho, V., Lynce, I.: Open-WBO: a modular MaxSAT solver. In: Sinz, C., Egly, U. (eds.) SAT 2014. LNCS, vol. 8561, pp. 438–445. Springer, Cham (2014). doi:10.1007/978-3-319-09284-3_33
Minoux, M.: LTUR: a simplified linear-time unit resolution algorithm for Horn formulae and computer implementation. Inf. Process. Lett. 29(1), 1–12 (1988)
Morgado, A., Dodaro, C., Marques-Silva, J.: Core-guided MaxSAT with soft cardinality constraints. In: O’Sullivan, B. (ed.) CP 2014. LNCS, vol. 8656, pp. 564–573. Springer, Cham (2014). doi:10.1007/978-3-319-10428-7_41
Morgado, A., Heras, F., Liffiton, M.H., Planes, J., Marques-Silva, J.: Iterative and core-guided MaxSAT solving: a survey and assessment. Constraints 18(4), 478–534 (2013)
Morgado, A., Ignatiev, A., Marques-Silva, J.: MSCG: robust core-guided MaxSAT solving. JSAT 9, 129–134 (2015)
Narodytska, N., Bacchus, F.: Maximum satisfiability using core-guided MaxSAT resolution. In: AAAI, pp. 2717–2723 (2014)
Nordström, J.: On the interplay between proof complexity and SAT solving. SIGLOG News 2(3), 19–44 (2015)
Ogawa, T., Liu, Y., Hasegawa, R., Koshimura, M., Fujita, H.: Modulo based CNF encoding of cardinality constraints and its application to MaxSAT solvers. In: ICTAI, pp. 9–17 (2013)
Pipatsrisawat, K., Darwiche, A.: On the power of clause-learning SAT solvers as resolution engines. Artif. Intell. 175(2), 512–525 (2011)
Previti, A. Ignatiev, A. Morgado, A., Marques-Silva, J.: Prime compilation of non-clausal formulae. In: IJCAI, pp. 1980–1988 (2015)
Razborov, A.A.: Proof complexity of pigeonhole principles. In: Kuich, W., Rozenberg, G., Salomaa, A. (eds.) DLT 2001. LNCS, vol. 2295, pp. 100–116. Springer, Heidelberg (2002). doi:10.1007/3-540-46011-X_8
Roorda, J.-W., Claessen, K.: A new SAT-based algorithm for symbolic trajectory evaluation. In: Borrione, D., Paul, W. (eds.) CHARME 2005. LNCS, vol. 3725, pp. 238–253. Springer, Heidelberg (2005). doi:10.1007/11560548_19
Saikko, P., Berg, J., Järvisalo, M.: LMHS: a SAT-IP hybrid MaxSAT solver. In: Creignou, N., Le Berre, D. (eds.) SAT 2016. LNCS, vol. 9710, pp. 539–546. Springer, Cham (2016). doi:10.1007/978-3-319-40970-2_34
Segerlind, N.: The complexity of propositional proofs. Bul. Symb. Logic 13(4), 417–481 (2007)
Sinz, C.: Towards an optimal CNF encoding of boolean cardinality constraints. In: Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 827–831. Springer, Heidelberg (2005). doi:10.1007/11564751_73
Soos, M.: Enhanced Gaussian elimination in DPLL-based SAT solvers. In: POS@SAT, pp. 2–14 (2010)
Soos, M., Nohl, K., Castelluccia, C.: Extending SAT solvers to cryptographic problems. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 244–257. Springer, Heidelberg (2009). doi:10.1007/978-3-642-02777-2_24
Urquhart, A.: Hard examples for resolution. J. ACM 34(1), 209–219 (1987)
Warners, J.P.: A linear-time transformation of linear inequalities into conjunctive normal form. Inf. Process. Lett. 68(2), 63–69 (1998)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Ignatiev, A., Morgado, A., Marques-Silva, J. (2017). On Tackling the Limits of Resolution in SAT Solving. In: Gaspers, S., Walsh, T. (eds) Theory and Applications of Satisfiability Testing – SAT 2017. SAT 2017. Lecture Notes in Computer Science(), vol 10491. Springer, Cham. https://doi.org/10.1007/978-3-319-66263-3_11
Download citation
DOI: https://doi.org/10.1007/978-3-319-66263-3_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-66262-6
Online ISBN: 978-3-319-66263-3
eBook Packages: Computer ScienceComputer Science (R0)