Nothing Special   »   [go: up one dir, main page]

Skip to main content

Recognizing Textual Entailment and Paraphrases in Portuguese

  • Conference paper
  • First Online:
Progress in Artificial Intelligence (EPIA 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10423))

Included in the following conference series:

  • 2781 Accesses

Abstract

The aim of textual entailment and paraphrase recognition is to determine whether the meaning of a text fragment can be inferred (is entailed) from the meaning of another text fragment. In this paper, we address the task of automatically recognizing textual entailment (RTE) and paraphrases from text written in the Portuguese language employing supervised machine learning techniques. Firstly, we formulate the task as a multi-class classification problem. We conclude that semantic-based approaches are very promising to recognize textual entailment and that combining data from European and Brazilian Portuguese brings several challenges typical with cross-language learning. Then, we formulate the task as a binary classification problem and demonstrate the capability of the proposed classifier for RTE and paraphrases. The results reported in this work are promising, achieving 0.83 of accuracy on the test data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://polyglot.readthedocs.io/en/latest/index.html.

References

  1. Agirre, E., Banea, C., Cardie, C., Cer, D.M., Diab, M.T., Gonzalez-Agirre, A., Guo, W., Lopez-Gazpio, I., Maritxalar, M., Mihalcea, R., Rigau, G., Uria, L., Wiebe, J.: Semeval-2015 task 2: semantic textual similarity, english, spanish and pilot on interpretability. In: Cer, D.M., Jurgens, D., Nakov, P., Zesch, T. (eds.) Proceedings of the 9th International Workshop on Semantic Evaluation, Denver, USA, pp. 252–263. ACL (2015)

    Google Scholar 

  2. Al-Rfou, R., Perozzi, B., Skiena, S.: Polyglot: distributed word representations for multilingual NLP. In: Proceedings of Seventeenth Conference on Computational Natural Language Learning, pp. 183–192. ACL, Sofia, Bulgaria, August 2013

    Google Scholar 

  3. Alves, A.O., Oliveira, H., Rodrigues, R.: ASAPP: Alinhamento Semântico Automático de Palavras aplicado ao Português. Linguamática 8(2), 43–58 (2016)

    Google Scholar 

  4. Androutsopoulos, I., Malakasiotis, P.: A survey of paraphrasing and textual entailment methods. J. Artif. Int. Res. 38(1), 135–187 (2010)

    MATH  Google Scholar 

  5. Beltagy, I., Roller, S., Cheng, P., Erk, K., Mooney, R.J.: Representing meaning with a combination of logical and distributional models. Comput. Linguist. 42(4), 763–808 (2016)

    Article  MathSciNet  Google Scholar 

  6. Bentivogli, L., Dagan, I., Dang, H.T., Giampiccolo, D., Magnini, B.: Fifth PASCAL recognizing textual entailment challenge. In: Proceedings of Text Analysis Conference (2009)

    Google Scholar 

  7. Dagan, I., Glickman, O., Magnini, B.: The PASCAL recognising Textual entailment challenge. In: Quiñonero-Candela, J., Dagan, I., Magnini, B., d’Alché-Buc, F. (eds.) MLCW 2005. LNCS, vol. 3944, pp. 177–190. Springer, Heidelberg (2006). doi:10.1007/11736790_9

    Chapter  Google Scholar 

  8. Dagan, I., Roth, D., Sammons, M., Zanzotto, F.M.: Recognizing Textual Entailment: Models and Applications. Synthesis Lectures on Human Language Technologies. Morgan & Claypool Publishers, San Rafael (2013)

    Google Scholar 

  9. De Marneffe, M., Rafferty, A.N., Manning, C.D.: Finding contradictions in text. In: Association for Computational Linguistics (2008)

    Google Scholar 

  10. Fellbaum, C. (ed.): WordNet: an electronic lexical database Language, speech, and communication. MIT Press, Cambridge (1998)

    MATH  Google Scholar 

  11. Fialho, P., Marques, R., Martins, B., Coheur, L., Quaresma, P.: INESC-ID@ASSIN: Medição de Similaridade Semântica e Reconhecimento de Inferência Textual. Linguamática 8(2), 33–42 (2016)

    Google Scholar 

  12. Fonseca, E., Santos, L., Criscuolo, M., Aluisio, S.: ASSIN: avaliacao de similaridade semantica e inferencia textual. In: Computational Processing of the Portuguese Language - 12th International Conference, Tomar, Portugal, 13–15 July (2016)

    Google Scholar 

  13. Garcia, M., Gamallo, P.: Yet another suite of multilingual NLP tools. In: Sierra-Rodríguez, J.-L., Leal, J.P., Simões, A. (eds.) SLATE 2015. CCIS, vol. 563, pp. 65–75. Springer, Cham (2015). doi:10.1007/978-3-319-27653-3_7

    Chapter  Google Scholar 

  14. Gonçalo Oliveira, H.: CONTO.PT: groundwork for the automatic creation of a fuzzy portuguese wordnet. In: Silva, J., Ribeiro, R., Quaresma, P., Adami, A., Branco, A. (eds.) PROPOR 2016. LNCS, vol. 9727, pp. 283–295. Springer, Cham (2016). doi:10.1007/978-3-319-41552-9_29

    Chapter  Google Scholar 

  15. Hartmann, N.S.: Solo Queue at ASSIN: Combinando Abordagens Tradicionais e Emergentes. Linguamática 8(2), 59–64 (2016)

    Google Scholar 

  16. Lai, A., Hockenmaier, J.: Illinois-LH: a denotational and distributional approach to semantics. In: Proceedings of 8th International Workshop on Semantic Evaluation (SemEval 2014), pp. 329–334. ACL, Dublin, Ireland, August 2014

    Google Scholar 

  17. Lin, C.Y., Och, F.J.: Automatic evaluation of machine translation quality using longest common subsequence and skip-bigram statistics. In: Proceedings of 42nd Annual Meeting Association for Computational Linguistics, Stroudsburg, PA, USA (2004)

    Google Scholar 

  18. Lippi, M., Torroni, P.: Argumentation mining: state of the art and emerging trends. ACM Trans. Internet Technol. 16(2), 10:1–10:25 (2016)

    Article  Google Scholar 

  19. Madnani, N., Dorr, B.J.: Generating phrasal and sentential paraphrases: a survey of data-driven methods. Comput. Linguist. 36(3), 341–387 (2010)

    Article  MathSciNet  Google Scholar 

  20. Marelli, M., Bentivogli, L., Baroni, M., Bernardi, R., Menini, S., Zamparelli, R.: Semeval-2014 task 1: evaluation of compositional distributional semantic models on full sentences through semantic relatedness and textual entailment. In: Nakov, P., Zesch, T. (eds.) Proceedings of 8th International Workshop on Semantic Evaluation, COLING, Dublin, Ireland, pp. 1–8. ACL (2014)

    Google Scholar 

  21. Moens, M.F.: Information Extraction: Algorithms and Prospects in a Retrieval Context. Springer, Heidelberg (2009)

    MATH  Google Scholar 

  22. Mollá, D., Vicedo, J.L.: Question answering in restricted domains: an overview. Comput. Linguist. 33(1), 41–61 (2007)

    Article  Google Scholar 

  23. Padó, S., Galley, M., Jurafsky, D., Manning, C.: Robust machine translation evaluation with entailment features. In: Proceedings of Joint Conference of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural Language Processing of the AFNLP, vol. 1, pp. 297–305. ACL, Stroudsburg, PA, USA (2009)

    Google Scholar 

  24. Papineni, K., Roukos, S., Ward, T., Zhu, W.J.: Bleu: A method for automatic evaluation of machine translation. In: Proceedings of 40th Annual Meeting Association Computational Linguistics, pp. 311–318. ACL, Stroudsburg, PA, USA (2002)

    Google Scholar 

  25. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  26. Rocha, G., Lopes Cardoso, H., Teixeira, J.: ArgMine: a framework for argumentation mining. In: 12th International Conference on Computational Processing of the Portuguese Language - PROPOR 2016, Student Research Workshop, Tomar, Portugal, 13–15 July (2016)

    Google Scholar 

  27. Rocktäschel, T., Grefenstette, E., Hermann, K.M., Kociský, T., Blunsom, P.: Reasoning about entailment with neural attention. CoRR abs/1509.06664 (2015)

    Google Scholar 

  28. Sammons, M., Vydiswaran, V., Roth, D.: Recognizing textual entailment. In: Bikel, D.M., Zitouni, I. (eds.) Multilingual Natural Language Applications: From Theory to Practice, pp. 209–258. Prentice Hall, Upper Saddle River (2012)

    Google Scholar 

Download references

Acknowledgments

The first author is partially supported by a doctoral grant from Doctoral Program in Informatics Engineering (ProDEI) from the Faculty of Engineering of the University of Porto (FEUP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gil Rocha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Rocha, G., Lopes Cardoso, H. (2017). Recognizing Textual Entailment and Paraphrases in Portuguese. In: Oliveira, E., Gama, J., Vale, Z., Lopes Cardoso, H. (eds) Progress in Artificial Intelligence. EPIA 2017. Lecture Notes in Computer Science(), vol 10423. Springer, Cham. https://doi.org/10.1007/978-3-319-65340-2_70

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-65340-2_70

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-65339-6

  • Online ISBN: 978-3-319-65340-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics