Nothing Special   »   [go: up one dir, main page]

Skip to main content

Multiclassifier System Using Class and Interclass Competence of Base Classifiers Applied to the Recognition of Grasping Movements in the Control of Bioprosthetic Hand

  • Conference paper
  • First Online:
Progress in Artificial Intelligence (EPIA 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10423))

Included in the following conference series:

Abstract

In this paper the problem of recognition of patient’s intent to move hand prosthesis is addressed. The proposed method is based on recognition of electromyographic (EMG) and mechanomyographic (MMG) biosignals using a multiclassifier (MC) system working with dynamic ensemble selection scheme and original concept of competence measure. The concept focuses on developing competence and interclass cross- competence measures which can be applied as a method for classifiers combination. The cross-competence measure allows an ensemble to harness information obtained from incompetent classifiers instead of removing them from the ensemble. The performance of MC system with proposed competence measure was experimentally compared against six state-of-the-art classification methods using real data concerning the recognition of six types of grasping movements. The system developed achieved the highest classification accuracies demonstrating the potential of MC system for the control of bioprosthetic hand.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Berger, J.: Statistical Decision Theory and Bayesian Analysis. Springer, New York (1985). doi:10.1007/978-1-4757-4286-2

    Book  MATH  Google Scholar 

  2. Britto, A., Sabourin, R., Oliveira, R.: Dynamic selection of classifiers a comprehensive review. Pattern Recogn. 47, 3665–3680 (2014)

    Article  Google Scholar 

  3. Carrozza, M., Cappiello, G., et al.: Design of a cybernetic hand for perception and action. Biol. Cybern. 95, 626–644 (2006)

    Article  Google Scholar 

  4. De Luca, C.: Electromyography. In: Webster, J.G. (ed.) Encyclopedia of Medical Devices and Instrumentation, pp. 98–109. Wiley, Hoboken (2006)

    Google Scholar 

  5. Demsar, J.: Statistical comparison of classifiers over multiple data sets. J. Mach. Learn. Res. 7, 1–30 (2006)

    MathSciNet  MATH  Google Scholar 

  6. Devroye, L.: A Probabilistic Theory of Pattern Recognition. Springer, New York (1996). doi:10.1007/978-1-4612-0711-5

    Book  MATH  Google Scholar 

  7. Dietterich, T.: Approximate statistical tests for comparing supervised classification learning algorithms. Neural Comput. 10, 1895–1923 (1998)

    Article  Google Scholar 

  8. Duda, R., Hart, P., Stork, D.: Pattern Classification. Wiley, New York (2000)

    MATH  Google Scholar 

  9. Englehart, K., Hudgins, B.: A robust, real-time control scheme for multifunction myoelectric control. IEEE Trans. Biomed. Eng. 50, 848–854 (2003)

    Article  Google Scholar 

  10. Kakoty, M., Hazarika, S.: Towards electromyogram-based grasps classification. Int. J. Biomech. Biomed. Robot. 3(2), 63–73 (2014)

    Google Scholar 

  11. Khushaba, R.: Application of biosignal-driven intelligent systems for multifunction prosthesis control. Ph.D. thesis, Faculty of Engineering and Information Technology, University of Technology, Sydney (2010)

    Google Scholar 

  12. Ko, A., Sabourin, N., Britto, A.: From dynamic classifier selection to dynamic ensemble selection. Pattern Recogn. 41, 1718–1731 (2008)

    Article  Google Scholar 

  13. Kuncheva, L.: Combining Pattern Classifiers: Methods and Algorithms. Wiley-Interscience, Hoboken (2004)

    Book  Google Scholar 

  14. Kurzynski, M.: On a two-level multiclassifier system with error correction applied to the control of bioprosthetic hand. In: Proceedings of the 14th World Congress of Medical Informatics MEDINFO, p. 210 (2013)

    Google Scholar 

  15. Kurzynski, M., Wolczowski, A.: Multiclassifier system with fuzzy inference method applied to the recognition of biosignals in the control of bioprosthetic hand. In: Zeng, Z., Li, Y., King, I. (eds.) ISNN 2014. LNCS, vol. 8866, pp. 469–478. Springer, Cham (2014). doi:10.1007/978-3-319-12436-0_52

    Chapter  Google Scholar 

  16. Kurzynski, M., Krysmann, M., et al.: Multiclassifier system with hybrid learning applied to the control of bioprosthetic hand. Comput. Biol. Med. 69, 286–297 (2016)

    Article  Google Scholar 

  17. Mamoni, D.: On cardinality of fuzzy sets. Int. J. Intell. Syst. Appl. 5, 47–52 (2013)

    Google Scholar 

  18. Micera, C., Carpantero, J., Raspopovic, S.: Control of hand prostheses using peripheral information. IEEE Rev. Biomed. Eng. 3, 48–68 (2010)

    Article  Google Scholar 

  19. Oskoei, M., Hu, H.: Support vector machine-based classification scheme for EMG control applied to upper limb. IEEE Trans. Biomed. Eng. 55, 1956–1965 (2008)

    Article  Google Scholar 

  20. Peerdeman, B., Boere, D., et al.: Myoelectric forearm prostheses: state of the art from a user-centered perspective. J. Rehabil. Res. Dev. 48, 719–738 (2011)

    Article  Google Scholar 

  21. Ravindra, K., Ildstad, S.: Immunosuppressive protocols and immunological challenges related to hand transplantation. Hand Clin. 27(4), 467–79 (2011)

    Article  Google Scholar 

  22. Schloegl, A.: A comparison of multivariate autoregressive estimators. Sig. Process. 9, 2426–2429 (2006)

    Article  Google Scholar 

  23. Trajdos, P., Kurzynski, M.: A dynamic model of classifier competence based on the local fuzzy confusion matrix and the random reference classifier. Int. J. Appl. Math. Comput. Sci. 26, 17–28 (2016)

    Article  MathSciNet  Google Scholar 

  24. Wolczowski, A., Kurzynski, M.: Human - machine interface in bio-prosthesis control using EMG signal classification. Expert Syst. 27, 53–70 (2010)

    Article  Google Scholar 

  25. Woloszynski, T., Kurzynski, M.: On a new measure of classifier competence applied to the design of multiclassifier systems. In: Foggia, P., Sansone, C., Vento, M. (eds.) ICIAP 2009. LNCS, vol. 5716, pp. 995–1004. Springer, Heidelberg (2009). doi:10.1007/978-3-642-04146-4_106

    Chapter  Google Scholar 

  26. Woloszynski, T., Kurzynski, M.: A probabilistic model of classifier competence for dynamic ensemble selection. Pattern Recogn. 44, 2656–2668 (2011)

    Article  Google Scholar 

  27. Woloszynski, T., Kurzynski, M., et al.: A measure of competence based on random classification for dynamic ensemble selection. Inf. Fusion 13, 207–213 (2012)

    Article  Google Scholar 

  28. Woloszynski, T.: Matlab Central File Enchange (2010). http://www.mathwork.com/matlabcentral/fileenchange/28391-classifier-competence-based-on-probabilistic-modeling

  29. Wolpert, D.: Stacked generalization. Neural Netw. 5, 214–259 (1992)

    Article  Google Scholar 

  30. Woods, K., Kegelmeyer, W., Bowyer, K.: Combination of multiple classifiers using local accuracy estimates. IEEE Trans. Pattern Anal. Mach. Intell. PAMI 19, 405–410 (1997)

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by the statutory funds of the Dept. of Systems and Computer Networks, Wroclaw Univ. of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marek Kurzynski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Kurzynski, M., Trajdos, P., Wolczowski, A. (2017). Multiclassifier System Using Class and Interclass Competence of Base Classifiers Applied to the Recognition of Grasping Movements in the Control of Bioprosthetic Hand. In: Oliveira, E., Gama, J., Vale, Z., Lopes Cardoso, H. (eds) Progress in Artificial Intelligence. EPIA 2017. Lecture Notes in Computer Science(), vol 10423. Springer, Cham. https://doi.org/10.1007/978-3-319-65340-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-65340-2_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-65339-6

  • Online ISBN: 978-3-319-65340-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics