Abstract
The post-processing process for an industrial robot in milling applications suffers from a redundancy problem when converting a 5-axis tool path to the corresponding 6-axis robot trajectory. This paper proposes a feed-direction stiffness based index to optimize the redundant freedom of the robot after identifying its stiffness model. At each cutter location point, the stiffness of the robot machining system along the feed direction is maximized, and an optimal robot configuration is obtained. The optimized robot trajectory via the proposed method has an advantage of improving the machining stability and production efficiency. Experiments verify the validity of the method.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Leali, F., Vergnano, A., Pini, F., Pellicciari, M., Berselli, G.: A workcell calibration method for enhancing accuracy in robot machining of aerospace parts. Int. J. Adv. Manufact. Technol. 85(1–4), 47–55 (2016)
Lehmann, C., Pellicciari, M., Drust, M., Gunnink, J.W.: Machining with industrial robots: the COMET project approach. Commun. Comput. Inf. Sci. 371, 27–36 (2013)
Chen, Y., Dong, F.: Robot machining: recent development and future research issues. Int. J. Adv. Manufact. Technol. 66(9–12), 1489–1497 (2013)
Xiao, W., Huan, J.: Redundancy and optimization of a 6R robot for five-axis milling applications: singularity, joint limits and collision. Prod. Eng. 6(3), 287–296 (2012)
Sabourin, L., Subrin, K., Cousturier, R., Gogu, G., Mezouar, Y.: Redundancy-based optimization approach to optimize robotic cell behaviour: application to robotic machining. Ind. Robot: Int. J. 42(2), 167–178 (2015)
Huo, L., Baron, L.: The self-adaptation of weights for joint-limits and singularity avoidances of functionally redundant robotic-task. Robot. Comput.-Integr. Manuf. 27(2), 367–376 (2011)
Schneider, U., Ansaloni, M., Drust, M., Leali, F., Verl, A.: Experimental investigation of sources of error in robot machining. In: Robotics in Smart Manufacturing, pp. 14–26 (2013)
Angeles, J.: On the nature of the Cartesian Stiffness Matrix. Ingeniería mecánica, tecnología desarrollo 3(5), 163–170 (2010)
Guo, Y., Dong, H., Ke, Y.: Stiffness-oriented posture optimization in robotic machining applications. Robot. Comput.-Integr. Manuf. 35, 69–76 (2015)
Lin, Y., Zhao, H., Ding, H.: Posture optimization methodology of 6R industrial robots for machining using performance evaluation indexes. Robot. Comput.-Integr. Manuf. 48, 59–72 (2017). (April 2016)
Peng, F.Y., Yan, R., Chen, W., Yang, J.Z., Li, B.: Anisotropic force ellipsoid based multi-axis motion optimization of machine tools. Chin. J. Mech. Eng. 25(5), 960–967 (2012)
Zhang, H., Pan, Z.: Robotic machining: material removal rate control with a flexible manipulator. In: 2008 IEEE Conference on Robotics, Automation and Mechatronics, pp. 30–35. IEEE, September 2008
Tsai, L.W.: Robot analysis: the mechanics of serial and parallel manipulators. Wiley, Hoboken (1999)
Wang, J., Zhang, H., Fuhlbrigge, T.: Improving machining accuracy with robot deformation compensation. In: 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3826–3831. IEEE, October 2009
Dumas, C., Caro, S., Cherif, M., Garnier, S., Furet, B.: Joint stiffness identification of industrial serial robots. Robotica 30(04), 649–659 (2012)
Chen, S.F., Kao, I.: Conservative congruence transformation for joint and cartesian stiffness matrices of robotic hands and fingers. Int. J. Robot. Res. 19(9), 835–847 (2000)
Alici, G., Shirinzadeh, B.: Enhanced stiffness modeling, identification and characterization for robot manipulators. IEEE Trans. Robot. 21(4), 554–564 (2005)
Zargarbashi, S., Khan, W., Angeles, J.: Posture optimization in robot-assisted machining operations. Mech. Mach. Theory 51, 74–86 (2012)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Xiong, G., Ding, Y., Zhu, L. (2017). A Feed-Direction Stiffness Based Trajectory Optimization Method for a Milling Robot. In: Huang, Y., Wu, H., Liu, H., Yin, Z. (eds) Intelligent Robotics and Applications. ICIRA 2017. Lecture Notes in Computer Science(), vol 10463. Springer, Cham. https://doi.org/10.1007/978-3-319-65292-4_17
Download citation
DOI: https://doi.org/10.1007/978-3-319-65292-4_17
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-65291-7
Online ISBN: 978-3-319-65292-4
eBook Packages: Computer ScienceComputer Science (R0)