Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Feed-Direction Stiffness Based Trajectory Optimization Method for a Milling Robot

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10463))

Included in the following conference series:

Abstract

The post-processing process for an industrial robot in milling applications suffers from a redundancy problem when converting a 5-axis tool path to the corresponding 6-axis robot trajectory. This paper proposes a feed-direction stiffness based index to optimize the redundant freedom of the robot after identifying its stiffness model. At each cutter location point, the stiffness of the robot machining system along the feed direction is maximized, and an optimal robot configuration is obtained. The optimized robot trajectory via the proposed method has an advantage of improving the machining stability and production efficiency. Experiments verify the validity of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Leali, F., Vergnano, A., Pini, F., Pellicciari, M., Berselli, G.: A workcell calibration method for enhancing accuracy in robot machining of aerospace parts. Int. J. Adv. Manufact. Technol. 85(1–4), 47–55 (2016)

    Article  Google Scholar 

  2. Lehmann, C., Pellicciari, M., Drust, M., Gunnink, J.W.: Machining with industrial robots: the COMET project approach. Commun. Comput. Inf. Sci. 371, 27–36 (2013)

    Google Scholar 

  3. Chen, Y., Dong, F.: Robot machining: recent development and future research issues. Int. J. Adv. Manufact. Technol. 66(9–12), 1489–1497 (2013)

    Article  Google Scholar 

  4. Xiao, W., Huan, J.: Redundancy and optimization of a 6R robot for five-axis milling applications: singularity, joint limits and collision. Prod. Eng. 6(3), 287–296 (2012)

    Article  Google Scholar 

  5. Sabourin, L., Subrin, K., Cousturier, R., Gogu, G., Mezouar, Y.: Redundancy-based optimization approach to optimize robotic cell behaviour: application to robotic machining. Ind. Robot: Int. J. 42(2), 167–178 (2015)

    Article  Google Scholar 

  6. Huo, L., Baron, L.: The self-adaptation of weights for joint-limits and singularity avoidances of functionally redundant robotic-task. Robot. Comput.-Integr. Manuf. 27(2), 367–376 (2011)

    Article  Google Scholar 

  7. Schneider, U., Ansaloni, M., Drust, M., Leali, F., Verl, A.: Experimental investigation of sources of error in robot machining. In: Robotics in Smart Manufacturing, pp. 14–26 (2013)

    Google Scholar 

  8. Angeles, J.: On the nature of the Cartesian Stiffness Matrix. Ingeniería mecánica, tecnología desarrollo 3(5), 163–170 (2010)

    Google Scholar 

  9. Guo, Y., Dong, H., Ke, Y.: Stiffness-oriented posture optimization in robotic machining applications. Robot. Comput.-Integr. Manuf. 35, 69–76 (2015)

    Article  Google Scholar 

  10. Lin, Y., Zhao, H., Ding, H.: Posture optimization methodology of 6R industrial robots for machining using performance evaluation indexes. Robot. Comput.-Integr. Manuf. 48, 59–72 (2017). (April 2016)

    Article  Google Scholar 

  11. Peng, F.Y., Yan, R., Chen, W., Yang, J.Z., Li, B.: Anisotropic force ellipsoid based multi-axis motion optimization of machine tools. Chin. J. Mech. Eng. 25(5), 960–967 (2012)

    Article  Google Scholar 

  12. Zhang, H., Pan, Z.: Robotic machining: material removal rate control with a flexible manipulator. In: 2008 IEEE Conference on Robotics, Automation and Mechatronics, pp. 30–35. IEEE, September 2008

    Google Scholar 

  13. Tsai, L.W.: Robot analysis: the mechanics of serial and parallel manipulators. Wiley, Hoboken (1999)

    Google Scholar 

  14. Wang, J., Zhang, H., Fuhlbrigge, T.: Improving machining accuracy with robot deformation compensation. In: 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3826–3831. IEEE, October 2009

    Google Scholar 

  15. Dumas, C., Caro, S., Cherif, M., Garnier, S., Furet, B.: Joint stiffness identification of industrial serial robots. Robotica 30(04), 649–659 (2012)

    Article  Google Scholar 

  16. Chen, S.F., Kao, I.: Conservative congruence transformation for joint and cartesian stiffness matrices of robotic hands and fingers. Int. J. Robot. Res. 19(9), 835–847 (2000)

    Article  Google Scholar 

  17. Alici, G., Shirinzadeh, B.: Enhanced stiffness modeling, identification and characterization for robot manipulators. IEEE Trans. Robot. 21(4), 554–564 (2005)

    Article  MATH  Google Scholar 

  18. Zargarbashi, S., Khan, W., Angeles, J.: Posture optimization in robot-assisted machining operations. Mech. Mach. Theory 51, 74–86 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to LiMin Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Xiong, G., Ding, Y., Zhu, L. (2017). A Feed-Direction Stiffness Based Trajectory Optimization Method for a Milling Robot. In: Huang, Y., Wu, H., Liu, H., Yin, Z. (eds) Intelligent Robotics and Applications. ICIRA 2017. Lecture Notes in Computer Science(), vol 10463. Springer, Cham. https://doi.org/10.1007/978-3-319-65292-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-65292-4_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-65291-7

  • Online ISBN: 978-3-319-65292-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics