Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Random Forest Method to Detect Parkinson’s Disease via Gait Analysis

  • Conference paper
  • First Online:
Engineering Applications of Neural Networks (EANN 2017)

Abstract

Remote care and telemonitoring have become essential component of current geriatric medicine. Intelligent use of wireless sensors is a major issue in relevant computational studies to realize these concepts in practice. While there has been a growing interest in recognizing daily activities of patients through wearable sensors, the efforts towards utilizing the streaming data from these sensors for clinical practices are limited. Here, we present a practical application of clinical data mining from wearable sensors with a particular objective of diagnosing Parkinson’s Disease from gait analysis through a sets of ground reaction force (GRF) sensors worn under the foots. We introduce a supervised learning method based on Random Forests that analyze the multi-sensor data to classify the person wearing these sensors. We offer to extract a set of time-domain and frequency-domain features that would be effective in distinguishing normal and diseased people from their gait signals. The experimental results on a benchmark dataset have shown that proposed method can significantly outperform the previous methods reported in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bonato, P.: Advances in wearable technology and its medical applications. In: 32nd Conference of the IEEE EMBS, Buenos Aires, Argentina, pp. 2021–2024 (2010)

    Google Scholar 

  2. Aminian, K., Najafi, B.: Capturing human motion using body-fixed sensors: outdoor measurement and clinical applications. Comput. Animation Virtual Worlds 15(2), 79–94 (2004)

    Article  Google Scholar 

  3. Baga, D., Fotiadis, D.I., Konitsiotis, S., Maziewski, P., Greenlaw, R., Chaloglou, D., Arrendondo, M.T., Robledo, M.G., Pastor, M.A.: PERFORM: personalised disease management for chronic neurodegenerative diseases: the Parkinson’s disease and amyotrophic lateral sclerosis cases. In: eChallenges e-2009 Conference, Istanbul (2009)

    Google Scholar 

  4. Godfrey, A., Conway, R., Meagher, D., Olaighin, G.: Direct measurement of human movement by accelerometry. Med. Eng. Phys. 30(10), 1364–1386 (2008)

    Article  Google Scholar 

  5. Zhao, W., Adolph, A.L., Puyau, M.R., Vohra, F.A., Butte, N.F., Zakeri, I.F.: Support vector machines classifiers of physical activities in preschoolers. Physiol. Rep. 1(1), e00006 (2013)

    Article  Google Scholar 

  6. Patel, S., Lorincz, K., Hughes, R., Huggins, N., Growdon, J., Standaert, D., Akay, M., Dy, J., Welsh, M., Bonato, P.: Monitoring motor fluctuations in patients with Parkinson’s disease using wearable sensors. IEEE Trans. Inf. Technol. Biomed. 13(6), 864–873 (2009)

    Article  Google Scholar 

  7. Shima, K., Tsuji, T., Kan, E., Kandori, A., Yokoe, M., Sakoda, S.: Measurement and evaluation of finger tapping movements using magnetic sensors. In: IEEE EMBS Conference, pp. 5628–5631. IEEE, Vancouver (2008)

    Google Scholar 

  8. Lee, S.W., Mase, K.: Activity and location recognitions using wearable sensors. IEEE Pervasive Comput. 1(3), 24–32 (2002)

    Article  Google Scholar 

  9. Greenlaw, R., et al.: PERFORM: building and mining electronic records of neurological patients being monitored in the home. In: Dössel, O., Schlegel, W.C. (eds.) World Congress on Medical Physics and Biomedical Engineering 2009, IFMBE Proceedings, vol. 25/9, pp. 533–535. Springer, Heidelberg (2009). doi:10.1007/978-3-642-03889-1_143

    Google Scholar 

  10. Ghika, J., Wiegner, A.W., Fang, J.J., Davies, L., Young, R., Growdown, J.H.: Portable system for quantifying motor abnormalities in Parkinson’s disease. IEEE Trans. Biomed. Eng. 40(3), 276–283 (1993)

    Article  Google Scholar 

  11. Spieker, S., Jentgens, C., Boose, A., Dichgans, J.: Reliability, specificity and sensitivity of long-term tremor recordings. Electroencephalogr. Clin. Neurophysiol. 97(6), 326–331 (1995)

    Article  Google Scholar 

  12. Bonato, P., Sherrill, D.M., Standaert, D.G., Salles, S.S., Akay, M.: Data mining techniques to detect motor fluctuations in Parkinson’s disease. In: Engineering in Medicine and Biology Society, pp. 4766–4769. IEEE, San Francisco (2004)

    Google Scholar 

  13. Patel, S., Sherrill, D., Hughes, R., Hester, T., Huggins, N., Lie-Nemeth, T., Standaert, D., Bonato, P.: Analysis of the severity of dyskinesia in patients with Parkinson’s disease via wearable sensors. In: International Workshop on Wearable and Implantable Body Sensor Networks. IEEE, Cambridge (2006)

    Google Scholar 

  14. Patel, S., Chen, B.R., Buckley, T., Rednic, R., McClure, D., Tarsy, D., Shih, L., Dy, J., Welsh, M., Bonato, P.: Home monitoring of patients with Parkinson’s disease via wearable technology and a web-based application. In: Engineering in Medicine and Biology Society (EMBC), pp. 4411–4414. IEEE, Buenos Aires (2010)

    Google Scholar 

  15. Keijsers, N.L., Horstink, M.W., van Hilten, J.J., Hoff, J.I., Gielen, C.C.: Detection and assessment of the severity of levodopa-induced dyskinesia in patients with Parkinson’s disease by neural networks. Mov. Disord. 15(6), 1104–1111 (2000)

    Article  Google Scholar 

  16. Moore, S.T., MacDougall, H.G., Gracies, J.M., Cohen, H.S., Ondo, W.G.: Long-term monitoring of gait in Parkinson’s disease. Gait Posture 6(2), 200–207 (2007)

    Article  Google Scholar 

  17. Cancela, J., Pastorino, M., Arredondo, M.T., Nikita, K.S., Villagra, F., Pastor, M.A.: Feasibility study of a wearable system based on a wireless body area network for gait assessment in Parkinson’s disease patients. Sensors 14(3), 4618–4633 (2014)

    Article  Google Scholar 

  18. LeMoyne, R., Mastroianni, T., Cozza, M., Coroian, C., Grundfest, W.: Implementation of an iPhone for characterizing Parkinson’s disease tremor through a wireless accelerometer application. In: Engineering in Medicine and Biology Society (EMBC), pp. 4954–4958. IEEE, Buenos Aires (2010)

    Google Scholar 

  19. Lee, S.H., Lim, J.S.: Parkinson’s disease classification using gait characteristics and wavelet-based feature extraction. Expert Syst. Appl. 39(8), 7338–7344 (2012)

    Article  Google Scholar 

  20. Daliri, M.R.: Chi-square distance kernel of the gaits for the diagnosis of Parkinson’s disease. Biomed. Sig. Process. Control 8(1), 66–70 (2013)

    Article  Google Scholar 

  21. Jane, Y.N., Nehemiah, H.K., Arputharaj, K.: A Q-backpropagated time delay neural network for diagnosing severity of gait disturbances in Parkinson’s disease. J. Biomed. Inform. 60, 169–176 (2016)

    Article  Google Scholar 

  22. Ertugrul, O.F., Kaya, Y., Tekin, R., Almali, M.N.: Detection of Parkinson’s disease by shifted one dimensional local binary patterns from gait. Expert Syst. Appl. 56, 156–163 (2016)

    Article  Google Scholar 

  23. Figo, D., Diniz, P.C., Ferreira, D.R., Cardoso, J.M.P.: Preprocessing techniques for context recognition from accelerometer data. Pers. Ubiquit. Comput. 14(7), 645–662 (2010)

    Article  Google Scholar 

  24. Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15, 31314–31338 (2015)

    Article  Google Scholar 

  25. Breiman, L.: Random forests. Mach. Learn. 55(1), 5–32 (2001)

    Article  MATH  Google Scholar 

  26. Archer, K.J., Kimes, R.V.: Empirical characterization of random forest variable importance measures. Comput. Stat. Data Anal. 52(4), 2249–2260 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  27. Watts, J.D., Powell, S.L., Lawrence, R.L., Hilker, T.: Improved classification of conservation tillage adoption using high temporal and synthetic satellite imagery. Remote Sens. Environ. 115, 66–75 (2011)

    Article  Google Scholar 

  28. Mennitt, D., Sherrill, K., Fristrup, K.: A geospatial model of ambient sound pressure levels in the contiguous United States. J. Acoust. Soc. Am. 135(5), 2746–2764 (2014)

    Article  Google Scholar 

  29. Frenkel-Toledo, S., Giladi, N., Peretz, C., Herman, T., Gruendlinger, L., Hausdorff, J.M.: Effect of gait speed on gait rhythmicity in Parkinson’s disease: variability of stride time and swing time respond differently. J. Neuroeng. Rehabil. 2(23) (2005). doi:10.1186/1743-0003-2-23. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1188069/

  30. Frenkel-Toledo, S., Giladi, N., Peretz, C., Herman, T., Gruendlinger, L., Hausdorff, J.M.: Treadmill walking as a pacemaker to improve gait rhythm and stability in Parkinson’s disease. Mov. Disord. 20(9), 1109–1114 (2005)

    Article  Google Scholar 

  31. Hausdorff, J.M., Lowenthal, J., Herman, T., Gruendlinger, L., Peretz, C., Giladi, N.: Rhythmic auditory stimulation modulates gait variability in Parkinson’s disease. Eur. J. Neurosci. 26(8), 2369–2375 (2007)

    Article  Google Scholar 

  32. Yogev, G., Giladi, N., Peretz, C., Springer, S., Simon, E.S., Hausdorff, J.M.: Dual tasking, gait rhythmicity and Parkinson’s disease: which aspects of gait are attention demanding? Eur. J. Neurosci. 22(5), 1248–1256 (2005)

    Article  Google Scholar 

  33. Physionet Gait in Parkinson’s Disease. https://physionet.org/pn3/gaitpdb/. Accessed 01 May 2017

Download references

Acknowledgement

This study was supported by the Scientific and Technological Research Council of Turkey (TUBITAK) under the Project 115E451.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Çağatay Berke Erdaş .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Açıcı, K., Erdaş, Ç.B., Aşuroğlu, T., Toprak, M.K., Erdem, H., Oğul, H. (2017). A Random Forest Method to Detect Parkinson’s Disease via Gait Analysis. In: Boracchi, G., Iliadis, L., Jayne, C., Likas, A. (eds) Engineering Applications of Neural Networks. EANN 2017. Communications in Computer and Information Science, vol 744. Springer, Cham. https://doi.org/10.1007/978-3-319-65172-9_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-65172-9_51

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-65171-2

  • Online ISBN: 978-3-319-65172-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics