Nothing Special   »   [go: up one dir, main page]

Skip to main content

Detection of Malignant Melanomas in Dermoscopic Images Using Convolutional Neural Network with Transfer Learning

  • Conference paper
  • First Online:
Engineering Applications of Neural Networks (EANN 2017)

Abstract

In this work, we report the use of convolutional neural networks for the detection of malignant melanomas against nevus skin lesions in a dataset of dermoscopic images of the same magnification. The technique of transfer learning is utilized to compensate for the limited size of the available image dataset. Results show that including transfer learning in training CNN architectures improves significantly the achieved classification results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Reed, K.B., Brewer, J.D., Lohse, C.M., Bringe, K.E., Pruit, C.N., Gibson, L.E.: increasing incidence of melanoma among young adults: an epidemiological study in Olmsted County, Minnesota. Mayo Clin. Proc. 87(4), 328–334 (2012)

    Article  Google Scholar 

  2. Stern, R.S.: Prevalence of a history of skin cancer in 2007: results of an incidence-based model. Arch. Dermatol. 146(3), 279–282 (2010)

    Article  Google Scholar 

  3. Rogers, H.W., Weinstock, M.A., Harris, A.R., et al.: Incidence estimate of nonmelanoma skin cancer in the United States, 2006. Arch. Dermatol. 146(3), 283–287 (2010)

    Article  Google Scholar 

  4. American Cancer Society. Cancer Facts & Figures (2015). http://www.cancer.org/research/cancerfactsstatistics/cancerfactsfigures2015/ Accessed 12 May 2015

  5. Maglogiannis, I., Doukas, C.N.: Overview of advanced computer vision systems for skin lesions characterization. IEEE Trans. Inf Technol. Biomed. 13(5), 721–733 (2009)

    Article  Google Scholar 

  6. Menzies, S.W.: Cutaneous melanoma: making a clinical diagnosis, present and future. Dermatol. Ther. 19(1), 32–39 (2006)

    Article  Google Scholar 

  7. Korotkov, K., Garcia, R.: Computerized analysis of pigmented skin lesions a review. Artif. Intell. Med. 56(2), 69–90 (2012)

    Article  Google Scholar 

  8. Maglogiannis, I., Delibasis, K.: Enhancing classification accuracy utilizing globules and dots features in digital dermoscopy. Comput. Methods Progr. Biomed. 118(2), 124–133 (2015). ISSN 0169-2607

    Article  Google Scholar 

  9. Dreiseitl, S., Ohno-Machado, L., Kittler, H., Vinterbo, S., Billhardt, H., Binder, M.: A comparison of machine learning methods for the diagnosis of pigmented skin lesions. J. Biomed. Inf. 34(1), 28–36 (2001)

    Article  Google Scholar 

  10. Maglogiannis, I., Zafiropoulos, E.: Utilizing support vector machines for the characterization of digital medical images. BMC Med. Inform. Decis. Mak. 4(4) (2004). http://www.biomedcentral.com/content/pdf/1472-6947-4-4.pdf

  11. Maragoudakis, M., Maglogiannis, I.: Skin lesion diagnosis from images using novel ensemble classification techniques. In: 2010 10th IEEE International Conference on Information Technology and Applications in Biomedicine (ITAB), pp. 1–5). IEEE, November 2010

    Google Scholar 

  12. Delibasis, K., Kottari, K., Maglogiannis, I.: Automated detection of streaks in dermoscopy images. In: Chbeir, R., Manolopoulos, Y., Maglogiannis, I., Alhajj, R. (eds.) AIAI 2015. IAICT, vol. 458, pp. 45–60. Springer, Cham (2015). doi:10.1007/978-3-319-23868-5_4

    Chapter  Google Scholar 

  13. Sadeghi, M., Lee, T.K., McLean, D., Lui, H., Atkins, M.S.: Oriented pattern analysis for streak detection in dermoscopy images. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012 Part I. LNCS, vol. 7510, pp. 298–306. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33415-3_37

    Chapter  Google Scholar 

  14. Sadeghi, M., Lee, T.K., McLean, D., Lui, H., Atkins, M.S.: Detection and analysis of irregular streaks in dermoscopic images of skin lesions. IEEE Trans. Med. Imaging 32(5), 849–861 (2013)

    Article  Google Scholar 

  15. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  16. Bottou, L.: On-line learning and stochastic approximations. In: On-line Learning in Neural Networks, pp. 9–42. Cambridge University Press (1998)

    Google Scholar 

  17. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Pereira, F., Burges, C.J.C., Bottou, L., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems 25, pp. 1097–1105. Curran Associates, Inc., New York (2012)

    Google Scholar 

  18. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: CVPR09 (2009)

    Google Scholar 

  19. Georgakopoulos, S.V., Iakovidis, D.K., Vasilakakis, M., Plagianakos, V.P., Koulaouzidis, A.: Weakly-supervised convolutional learning for detection of inflammatory gastrointestinal lesions. In: 2016 IEEE International Conference on Imaging Systems and Techniques (IST), pp. 510–514. October 2016

    Google Scholar 

  20. Iakovidis, D.K., Koulaouzidis, A.: Software for enhanced video capsule endoscopy: challenges for essential progress. Nat. Rev. Gastroenterol. Hepatol. 12(3), 172–186 (2015)

    Article  Google Scholar 

  21. Yosinski, J., Clune, J., Bengio, Y., Lipson, H.: How transferable are features in deep neural networks? In: Advances in Neural Information Processing Systems, vol. 27, pp. 3320–3328 (2014)

    Google Scholar 

  22. Zhang, R., Zheng, Y., Mak, T.W.C., Yu, R., Wong, S.H., Lau, J.Y.W., Poon, C.C.Y.: Automatic detection and classification of colorectal polyps by transferring low-level CNN features from nonmedical domain. IEEE J. Biomed. Health Inform. 21(1), 41–47 (2017)

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the support of NVDIA Corporation for the donation of the Titan X Pascal GPU used for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Maglogiannis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Georgakopoulos, S.V., Kottari, K., Delibasis, K., Plagianakos, V.P., Maglogiannis, I. (2017). Detection of Malignant Melanomas in Dermoscopic Images Using Convolutional Neural Network with Transfer Learning. In: Boracchi, G., Iliadis, L., Jayne, C., Likas, A. (eds) Engineering Applications of Neural Networks. EANN 2017. Communications in Computer and Information Science, vol 744. Springer, Cham. https://doi.org/10.1007/978-3-319-65172-9_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-65172-9_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-65171-2

  • Online ISBN: 978-3-319-65172-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics