Nothing Special   »   [go: up one dir, main page]

Skip to main content

Anomaly Detection in Cognitive Radio Networks Exploiting Singular Spectrum Analysis

  • Conference paper
  • First Online:
Computer Network Security (MMM-ACNS 2017)

Part of the book series: Lecture Notes in Computer Science ((LNCCN,volume 10446))

Abstract

Cognitive radio networks (CRNs) is a promising technology that allows secondary users (SUs) extensively explore spectrum resource usage efficiency, while not introducing interference to licensed users. Due to the unregulated wireless network environment, CRNs are susceptible to various malicious entities. Thus, it is critical to detect anomalies in the first place. However, from the perspective of intrinsic features of CRNs, there is hardly in existence of an universal applicable anomaly detection scheme. Singular Spectrum Analysis (SSA) has been theoretically proven an optimal approach for accurate and quick detection of changes in the characteristics of a running (random) process. In addition, SSA is a model-free method and no parametric models have to be assumed for different types of anomalies, which makes it a universal anomaly detection scheme. In this paper, we introduce an adaptive parameter and component selection mechanism based on coherence for basic SSA method, upon which we built up a sliding window based anomaly detector in CRNs. Our experimental results indicate great accuracy of the SSA-based anomaly detector for multiple anomalies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Adelantado, F., Verikoukis, C.: Detection of malicious users in cognitive radio ad hoc networks: a non-parametric statistical approach. Ad Hoc Netw. 11(8), 2367–2380 (2013)

    Article  Google Scholar 

  2. Esch, J.: A survey of security challenges in cognitive radio networks: solutions and future research directions. Proc. IEEE 12(100), 3170–3171 (2012)

    Article  Google Scholar 

  3. Basseville, M., Nikiforov, I.V., et al.: Theory and Application, vol. 104. Prentice Hall, Englewood Cliffs (1993)

    Google Scholar 

  4. Poor, H.V.: Hadjiliadis O Quickest detection, vol. 40. Cambridge University Press, Cambridge (2009)

    Google Scholar 

  5. Rawat, A.S., Anand, P., Chen, H., Varshney, P.K.: Countering byzantine attacks in cognitive radio networks. In: IEEE (2010)

    Google Scholar 

  6. Min, A.W., Shin, K.G., Hu, X.: Attack-tolerant distributed sensing for dynamic spectrum access networks. In: IEEE (2009)

    Google Scholar 

  7. Wang, B., Wu, Y., Liu, K.R., Clancy, T.C.: An anti-jamming stochastic game for cognitive radio networks. IEEE J. Sel. Areas Commun. 29(4), 877–889 (2011)

    Article  Google Scholar 

  8. Attar, A., Nakhai, M.R., Aghvami, A.H.: Cognitive radio game for secondary spectrum access problem. IEEE Trans. Wireless Commun. 8(4), 2121–2131 (2009)

    Article  Google Scholar 

  9. Cormio, C., Chowdhury, K.R.: Common control channel design for cognitive radio wireless ad hoc networks using adaptive frequency hopping. Ad Hoc Netw. 8(4), 430–438 (2010)

    Article  Google Scholar 

  10. Broomhead, D.S., King, G.P.: Extracting qualitative dynamics from experimental data. Physica D 20(2–3), 217–236 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  11. Rukhin, A.L.: Analysis of time series structure ssa and related techniques. Technometrics 44(3), 290–290 (2002)

    Article  Google Scholar 

  12. Yang, Z., Zhou, N., Polunchenko, A., Chen, Y.: Quick online detection of start time of disturbance in power grid. The IEEE GlobeCom 2015. Selected Areas in Communications Symposium, Smart Grid Communications Track, pp. 1–6. IEEE (2015)

    Google Scholar 

  13. Wu, C., Chau, K.: Rainfall-runoff modeling using artificial neural network coupled with singular spectrum analysis. J. Hydrol. 399(3), 394–409 (2011)

    Article  Google Scholar 

  14. Oropeza, V., Sacchi, M.: Simultaneous seismic data denoising and reconstruction via multichannel singular spectrum analysis. Geophysics 76(3), V25–V32 (2011)

    Article  Google Scholar 

  15. Moskvina, V., Zhigljavsky, A.: An algorithm based on singular spectrum analysis for change-point detection. Commun. Stat. Simul. Comput. 32(2), 319–352 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. Chen, Z., Cooklev, T., Chen, C., Pomalaza-Ráez, C.: Modeling primary user emulation attacks and defenses in cognitive radio networks. IEEE (2009)

    Google Scholar 

  17. Chen, R., Park, J.M., Reed, J.H.: Defense against primary user emulation attacks in cognitive radio networks. IEEE J. Sel. Areas Commun. 26(1), 25–37 (2008)

    Article  Google Scholar 

  18. Mahamuni, S., Mishra, V.: Performance evaluation of spectrum detection in cognitive radio network. Int. J. Commun. Netw. Syst. Sci. 7(11), 485 (2014)

    Google Scholar 

  19. Marko Hoyhtya, S.P., Mammela, A.: Improving the performance of cognitive radios through classification, learning, and predictive channel selection. In: Advances in Electronics and Telecommunications (2011)

    Google Scholar 

  20. Rehmani, M.H., Viana, A.C., Khalife, H., Fdida, S.: Surf: a distributed channel selection strategy for data dissemination in multi-hop cognitive radio networks. Comput. Commun. 36(10), 1172–1185 (2013)

    Article  Google Scholar 

  21. Sriram, K., Whitt, W.: Characterizing superposition arrival processes in packet multiplexers for voice and data. IEEE J. Sel. Areas Commun. 4(6), 833–846 (1986)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Dong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Dong, Q., Yang, Z., Chen, Y., Li, X., Zeng, K. (2017). Anomaly Detection in Cognitive Radio Networks Exploiting Singular Spectrum Analysis. In: Rak, J., Bay, J., Kotenko, I., Popyack, L., Skormin, V., Szczypiorski, K. (eds) Computer Network Security. MMM-ACNS 2017. Lecture Notes in Computer Science(), vol 10446. Springer, Cham. https://doi.org/10.1007/978-3-319-65127-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-65127-9_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-65126-2

  • Online ISBN: 978-3-319-65127-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics