Nothing Special   »   [go: up one dir, main page]

Skip to main content

Predicting Data Quality Success - The Bullwhip Effect in Data Quality

  • Conference paper
  • First Online:
Perspectives in Business Informatics Research (BIR 2017)

Part of the book series: Lecture Notes in Business Information Processing ((LNBIP,volume 295))

Included in the following conference series:

Abstract

Over the last years many data quality initiatives and suggestions report how to improve and sustain data quality. However, almost all data quality projects and suggestions focus on the assessment and one-time quality improvement, especially, suggestions rarely include how to sustain the continuous data quality improvement. Inspired by the work related to variability in supply chains, also known as the Bullwhip effect, this paper aims to suggest how to sustain data quality improvements and investigate the effects of delays in reporting data quality indicators. Furthermore, we propose that a data quality prediction model can be used as one of countermeasures to reduce the Data Quality Bullwhip Effect. Based on a real-world case study, this paper makes an attempt to show how to reduce this effect. Our results indicate that data quality success is a critical practice, and predicting data quality improvements can be used to decrease the variability of the data quality index in a long run.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Delone, W.H., McLean, E.R.: The DeLone and McLean model of information systems success: a ten-year update. J. MIS 19, 9–30 (2003)

    Google Scholar 

  2. DeLone, W.H., McLean, E.R.: Information systems success: the quest for the dependent variable. Inf. Syst. Res. 3, 60–95 (1992)

    Article  Google Scholar 

  3. English, L.P.: Information Quality Applied. Wiley, Indianapolis (2009)

    Google Scholar 

  4. Gartner: How to Overcome the Top Four Data Quality Practice Challenges. Gartner, Eghamm, UK (2017). https://www.gartner.com/doc/reprints?id=1-3W2JDZM&ct=170321&st=sb&elqTrackId=6d44157259df451482de51700cca6d36&elqaid=2250&elqat=2. Accessed 18 May 2017

  5. Ge, M., Helfert, M.: Impact of information quality on supply chain decisions. J. Comput. Inf. Syst. 53(4), 59–67 (2013)

    Google Scholar 

  6. Ge, M., Helfert, M., Jannach, D.: Information quality assessment: validating measurement dimensions and process. In: Proceedings of 19th European Conference on Information Systems, Helsinki, Finland (2011)

    Google Scholar 

  7. Ge, M., Helfert, M.: Effects of information quality on inventory management. Int. J. Inf. Qual. 2(2), 176–191 (2008)

    Google Scholar 

  8. Gustafsson, P., Franke, U., Höök, D., Johnson, P.: Quantifying IT impacts on organizational structure and business value with extended influence diagrams. In: Stirna, J., Persson, A. (eds.) PoEM 2008. LNBIP, vol. 15, pp. 138–152. Springer, Heidelberg (2008). doi:10.1007/978-3-540-89218-2_11

    Chapter  Google Scholar 

  9. Haug, A., Zachariassen, F., van Liempd, D.: The cost of poor data quality. J. Ind. Eng. Manag. 4(2), 168–193 (2011)

    Google Scholar 

  10. Helfert, M., O’Brien, T.: Sustaining data quality – creating and sustaining data quality within diverse enterprise resource planning and information systems. In: Nüttgens, M., Gadatsch, A., Kautz, K., Schirmer, I., Blinn, N. (eds.) TDIT 2011. IAICT, vol. 366, pp. 317–324. Springer, Heidelberg (2011). doi:10.1007/978-3-642-24148-2_25

    Chapter  Google Scholar 

  11. Knight, S., Burn, J.: Developing a framework for assessing information quality on the World Wide Web. Inf. Sci. J. 8(5), 159–172 (2005)

    Google Scholar 

  12. Lukyanenko, R., Parsons, J.: Information quality research challenge: adapting information quality principles to user-generated content. ACM J. Data Inf. Qual. 6(1), 3 (2015)

    Google Scholar 

  13. Lee, H.L., Padmanabhan, V., Whang, S.: Information distortion in a supply chain: the bullwhip effect. Manag. Sci. 43(4), 546 (1997)

    Article  Google Scholar 

  14. O’Brien, T., Sukumar, A., Helfert, M.: The value of good data- a quality perspective. In: International Conference of Enterprise Information Systems, Angers, France (2013)

    Google Scholar 

  15. Slack, N., Brandon-Jones, A., Johnston, R.: Operations Management, 8th edn. Pearson Education, Harlow (2016)

    Google Scholar 

  16. Wang, R.Y.: A product perspective on total data quality management. Commun. ACM 41(2), 58–65 (1998)

    Article  Google Scholar 

  17. Wand, Y., Wang, R.Y.: Anchoring data quality dimensions in ontological foundations. Commun. ACM 39(11), 86–95 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mouzhi Ge .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Ge, M., O’Brien, T., Helfert, M. (2017). Predicting Data Quality Success - The Bullwhip Effect in Data Quality. In: Johansson, B., Møller, C., Chaudhuri, A., Sudzina, F. (eds) Perspectives in Business Informatics Research. BIR 2017. Lecture Notes in Business Information Processing, vol 295. Springer, Cham. https://doi.org/10.1007/978-3-319-64930-6_12

Download citation

Publish with us

Policies and ethics