Nothing Special   »   [go: up one dir, main page]

Skip to main content

Numerical Methods

  • Chapter
  • First Online:
Matrix Algebra

Part of the book series: Springer Texts in Statistics ((STS))

  • 9007 Accesses

Abstract

The computer is a tool for storage, manipulation, and presentation of data. The data may be numbers, text, or images, but no matter what the data are, they must be coded into a sequence of 0s and 1s because that is what the computer stores. For each type of data, there are several ways of coding. For any unique coding scheme, the primary considerations are efficiency in storage, retrieval, and computations. Each of these considerations may depend on the computing system to be used. Another important consideration is coding that can be shared or transported to other systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alefeld, Göltz, and Jürgen Herzberger. (1983). Introduction to Interval Computation. New York: Academic Press.

    MATH  Google Scholar 

  • ANSI. 1989. American National Standard for Information Systems — Programming Language C, Document X3.159-1989. New York: American National Standards Institute.

    Google Scholar 

  • ANSI. 1992. American National Standard for Information Systems — Programming Language Fortran-90, Document X3.9-1992. New York: American National Standards Institute.

    Google Scholar 

  • ANSI. 1998. American National Standard for Information Systems — Programming Language C++, Document ISO/IEC 14882-1998. New York: American National Standards Institute.

    Google Scholar 

  • Bailey, David H. 1993. Algorithm 719: Multiprecision translation and execution of FORTRAN programs. ACM Transactions on Mathematical Software 19:288–319.

    Article  MATH  Google Scholar 

  • Bailey, David H. 1995. A Fortran 90-based multiprecision system. ACM Transactions on Mathematical Software 21:379–387.

    Article  MATH  Google Scholar 

  • Bickel, Peter J., and Joseph A. Yahav. 1988. Richardson extrapolation and the bootstrap. Journal of the American Statistical Association 83:387–393.

    Article  MathSciNet  MATH  Google Scholar 

  • Blackford, L. S., J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon, J. Dongarra, S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker, and R. C. Whaley. 1997a. ScaLAPACK Users’ Guide. Philadelphia: Society for Industrial and Applied Mathematics.

    Google Scholar 

  • Calvetti, Daniela. 1991. Roundoff error for floating point representation of real data. Communications in Statistics 20:2687–2695.

    Article  MathSciNet  MATH  Google Scholar 

  • Chaitin-Chatelin, Françoise, and Valérie Frayssé. 1996. Lectures on Finite Precision Computations. Philadelphia: Society for Industrial and Applied Mathematics.

    Book  MATH  Google Scholar 

  • Chan, T. F., G. H. Golub, and R. J. LeVeque. 1982. Updating formulae and a pairwise algorithm for computing sample variances. In Compstat 1982: Proceedings in Computational Statistics, ed. H. Caussinus, P. Ettinger, and R. Tomassone, 30–41. Vienna: Physica-Verlag.

    Google Scholar 

  • Chan, Tony F., Gene H. Golub, and Randall J. LeVeque. 1983. Algorithms for computing the sample variance: Analysis and recommendations. The American Statistician 37:242–247.

    MathSciNet  MATH  Google Scholar 

  • Cody, W. J. 1988. Algorithm 665: MACHAR: A subroutine to dynamically determine machine parameters. ACM Transactions on Mathematical Software 14:303–329.

    Article  MATH  Google Scholar 

  • Cody, W. J., and Jerome T. Coonen. 1993. Algorithm 722: Functions to support the IEEE standard for binary floating-point arithmetic. ACM Transactions on Mathematical Software 19:443–451.

    Article  MATH  Google Scholar 

  • Dempster, Arthur P., and Donald B. Rubin. 1983. Rounding error in regression: The appropriateness of Sheppard’s corrections. Journal of the Royal Statistical Society, Series B 39:1–38.

    MATH  Google Scholar 

  • Gentle, James E. 2009. Computational Statistics. New York: Springer-Verlag.

    Book  MATH  Google Scholar 

  • Gregory, R. T., and E. V. Krishnamurthy. 1984. Methods and Applications of Error-Free Computation. New York: Springer-Verlag.

    Book  MATH  Google Scholar 

  • Grewal, Mohinder S., and Angus P. Andrews. 1993. Kalman Filtering Theory and Practice. Englewood Cliffs, New Jersey: Prentice-Hall.

    Google Scholar 

  • Gropp, William D. 2005. Issues in accurate and reliable use of parallel computing in numerical programs. In Accuracy and Reliability in Scientific Computing, ed. Bo Einarsson, 253–263. Philadelphia: Society for Industrial and Applied Mathematics.

    Chapter  Google Scholar 

  • Higham, Nicholas J. 2002. Accuracy and Stability of Numerical Algorithms, 2nd ed. Philadelphia: Society for Industrial and Applied Mathematics.

    Book  MATH  Google Scholar 

  • IEEE. 2008. IEEE Standard for Floating-Point Arithmetic, Std 754-2008. New York: IEEE, Inc.

    Google Scholar 

  • Jansen, Paul, and Peter Weidner. 1986. High-accuracy arithmetic software — some tests of the ACRITH problem-solving routines. ACM Transactions on Mathematical Software 12:62–70.

    Article  MathSciNet  MATH  Google Scholar 

  • Jaulin, Luc, Michel Kieffer, Olivier Didrit, and Eric Walter. (2001). Applied Interval Analysis. New York: Springer.

    Book  MATH  Google Scholar 

  • Kearfott, R. Baker. 1996. Interval_arithmetic: A Fortran 90 module for an interval data type. ACM Transactions on Mathematical Software 22:385–392.

    Article  MATH  Google Scholar 

  • Kearfott, R. Baker, and Vladik Kreinovich (Editors). 1996. Applications of Interval Computations. Netherlands: Kluwer, Dordrecht.

    MATH  Google Scholar 

  • Kearfott, R. B., M. Dawande, K. Du, and C. Hu. 1994. Algorithm 737: INTLIB: A portable Fortran 77 interval standard-function library. ACM Transactions on Mathematical Software 20:447–459.

    Article  MATH  Google Scholar 

  • Keller-McNulty, Sallie, and W. J. Kennedy. 1986. An error-free generalized matrix inversion and linear least squares method based on bordering. Communications in Statistics — Simulation and Computation 15:769–785.

    Article  MathSciNet  MATH  Google Scholar 

  • Kshemkalyani, Ajay D., and Mukesh Singhal. 2011. Distributed Computing: Principles, Algorithms, and Systems. Cambridge, United Kingdom: Cambridge University Press.

    MATH  Google Scholar 

  • Kulisch, Ulrich. 2011. Very fast and exact accumulation of products. Computing 91:397–405.

    Article  MathSciNet  MATH  Google Scholar 

  • Lemmon, David R., and Joseph L. Schafer. 2005. Developing Statistical Software in Fortran 95. New York: Springer-Verlag.

    MATH  Google Scholar 

  • Levesque, John, and Gene Wagenbreth. 2010. High Performance Computing: Programming and Applications. Boca Raton: Chapman and Hall/CRC Press.

    Book  Google Scholar 

  • Liem, C. B., T. Lü, and T. M. Shih. 1995. The Splitting Extrapolation Method. Singapore: World Scientific.

    Book  MATH  Google Scholar 

  • Linnainmaa, Seppo. 1975. Towards accurate statistical estimation of rounding errors in floating-point computations. BIT 15:165–173.

    Article  MathSciNet  MATH  Google Scholar 

  • Metcalf, Michael, John Reid, and Malcolm Cohen. 2011. Modern Fortran Explained. Oxford, United Kingdom: Oxford University Press.

    MATH  Google Scholar 

  • Moore, Ramon E. (1979). Methods and Applications of Interval Analysis. Philadelphia: Society for Industrial and Applied Mathematics.

    Book  MATH  Google Scholar 

  • Nakano, Junji. 2012. Parallel computing techniques. In Handbook of Computational Statistics: Concepts and Methods, 2nd revised and updated ed., ed. James E. Gentle, Wolfgang Härdle, and Yuichi Mori, 243–272. Berlin: Springer.

    Chapter  Google Scholar 

  • Overton, Michael L. 2001. Numerical Computing with IEEE Floating Point Arithmetic. Philadelphia: Society for Industrial and Applied Mathematics.

    Book  MATH  Google Scholar 

  • Parsian, Mahmoud. 2015. Data Algorithms. Sabastopol, California: O’Reilly Media, Inc.

    Google Scholar 

  • Stallings, W. T., and T. L. Boullion. 1972. Computation of pseudo-inverse using residue arithmetic. SIAM Review 14:152–163.

    Article  MathSciNet  MATH  Google Scholar 

  • Szabó, S., and R. Tanaka. 1967. Residue Arithmetic and Its Application to Computer Technology. New York: McGraw-Hill.

    MATH  Google Scholar 

  • Unicode Consortium. 1990. The Unicode Standard, Worldwide Character Encoding, Version 1.0, Volume 1. Reading, Massachusetts: Addison-Wesley Publishing Company.

    Google Scholar 

  • Unicode Consortium. 1992. The Unicode Standard, Worldwide Character Encoding, Version 1.0, Volume 2. Reading, Massachusetts: Addison-Wesley Publishing Company.

    Google Scholar 

  • Walster, G. William. 1996. Stimulating hardware and software support for interval arithmetic. In Applications of Interval Computations, ed. R. Baker Kearfott and Vladik Kreinovich, 405–416. Dordrecht, Netherlands: Kluwer.

    Chapter  Google Scholar 

  • Walster, G. William. 2005. The use and implementation of interval data types. In Accuracy and Reliability in Scientific Computing, ed. Bo Einarsson, 173–194. Philadelphia: Society for Industrial and Applied Mathematics.

    Chapter  Google Scholar 

  • Wilkinson, J. H. 1959. The evaluation of the zeros of ill-conditioned polynomials. Numerische Mathematik 1:150–180.

    Article  MathSciNet  MATH  Google Scholar 

  • Wilkinson, J. H. 1963. Rounding Errors in Algebraic Processes. Englewood Cliffs, New Jersey: Prentice-Hall. (Reprinted by Dover Publications, Inc., New York, 1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Gentle, J.E. (2017). Numerical Methods. In: Matrix Algebra. Springer Texts in Statistics. Springer, Cham. https://doi.org/10.1007/978-3-319-64867-5_10

Download citation

Publish with us

Policies and ethics