Abstract
The computer is a tool for storage, manipulation, and presentation of data. The data may be numbers, text, or images, but no matter what the data are, they must be coded into a sequence of 0s and 1s because that is what the computer stores. For each type of data, there are several ways of coding. For any unique coding scheme, the primary considerations are efficiency in storage, retrieval, and computations. Each of these considerations may depend on the computing system to be used. Another important consideration is coding that can be shared or transported to other systems.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Alefeld, Göltz, and Jürgen Herzberger. (1983). Introduction to Interval Computation. New York: Academic Press.
ANSI. 1989. American National Standard for Information Systems — Programming Language C, Document X3.159-1989. New York: American National Standards Institute.
ANSI. 1992. American National Standard for Information Systems — Programming Language Fortran-90, Document X3.9-1992. New York: American National Standards Institute.
ANSI. 1998. American National Standard for Information Systems — Programming Language C++, Document ISO/IEC 14882-1998. New York: American National Standards Institute.
Bailey, David H. 1993. Algorithm 719: Multiprecision translation and execution of FORTRAN programs. ACM Transactions on Mathematical Software 19:288–319.
Bailey, David H. 1995. A Fortran 90-based multiprecision system. ACM Transactions on Mathematical Software 21:379–387.
Bickel, Peter J., and Joseph A. Yahav. 1988. Richardson extrapolation and the bootstrap. Journal of the American Statistical Association 83:387–393.
Blackford, L. S., J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon, J. Dongarra, S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker, and R. C. Whaley. 1997a. ScaLAPACK Users’ Guide. Philadelphia: Society for Industrial and Applied Mathematics.
Calvetti, Daniela. 1991. Roundoff error for floating point representation of real data. Communications in Statistics 20:2687–2695.
Chaitin-Chatelin, Françoise, and Valérie Frayssé. 1996. Lectures on Finite Precision Computations. Philadelphia: Society for Industrial and Applied Mathematics.
Chan, T. F., G. H. Golub, and R. J. LeVeque. 1982. Updating formulae and a pairwise algorithm for computing sample variances. In Compstat 1982: Proceedings in Computational Statistics, ed. H. Caussinus, P. Ettinger, and R. Tomassone, 30–41. Vienna: Physica-Verlag.
Chan, Tony F., Gene H. Golub, and Randall J. LeVeque. 1983. Algorithms for computing the sample variance: Analysis and recommendations. The American Statistician 37:242–247.
Cody, W. J. 1988. Algorithm 665: MACHAR: A subroutine to dynamically determine machine parameters. ACM Transactions on Mathematical Software 14:303–329.
Cody, W. J., and Jerome T. Coonen. 1993. Algorithm 722: Functions to support the IEEE standard for binary floating-point arithmetic. ACM Transactions on Mathematical Software 19:443–451.
Dempster, Arthur P., and Donald B. Rubin. 1983. Rounding error in regression: The appropriateness of Sheppard’s corrections. Journal of the Royal Statistical Society, Series B 39:1–38.
Gentle, James E. 2009. Computational Statistics. New York: Springer-Verlag.
Gregory, R. T., and E. V. Krishnamurthy. 1984. Methods and Applications of Error-Free Computation. New York: Springer-Verlag.
Grewal, Mohinder S., and Angus P. Andrews. 1993. Kalman Filtering Theory and Practice. Englewood Cliffs, New Jersey: Prentice-Hall.
Gropp, William D. 2005. Issues in accurate and reliable use of parallel computing in numerical programs. In Accuracy and Reliability in Scientific Computing, ed. Bo Einarsson, 253–263. Philadelphia: Society for Industrial and Applied Mathematics.
Higham, Nicholas J. 2002. Accuracy and Stability of Numerical Algorithms, 2nd ed. Philadelphia: Society for Industrial and Applied Mathematics.
IEEE. 2008. IEEE Standard for Floating-Point Arithmetic, Std 754-2008. New York: IEEE, Inc.
Jansen, Paul, and Peter Weidner. 1986. High-accuracy arithmetic software — some tests of the ACRITH problem-solving routines. ACM Transactions on Mathematical Software 12:62–70.
Jaulin, Luc, Michel Kieffer, Olivier Didrit, and Eric Walter. (2001). Applied Interval Analysis. New York: Springer.
Kearfott, R. Baker. 1996. Interval_arithmetic: A Fortran 90 module for an interval data type. ACM Transactions on Mathematical Software 22:385–392.
Kearfott, R. Baker, and Vladik Kreinovich (Editors). 1996. Applications of Interval Computations. Netherlands: Kluwer, Dordrecht.
Kearfott, R. B., M. Dawande, K. Du, and C. Hu. 1994. Algorithm 737: INTLIB: A portable Fortran 77 interval standard-function library. ACM Transactions on Mathematical Software 20:447–459.
Keller-McNulty, Sallie, and W. J. Kennedy. 1986. An error-free generalized matrix inversion and linear least squares method based on bordering. Communications in Statistics — Simulation and Computation 15:769–785.
Kshemkalyani, Ajay D., and Mukesh Singhal. 2011. Distributed Computing: Principles, Algorithms, and Systems. Cambridge, United Kingdom: Cambridge University Press.
Kulisch, Ulrich. 2011. Very fast and exact accumulation of products. Computing 91:397–405.
Lemmon, David R., and Joseph L. Schafer. 2005. Developing Statistical Software in Fortran 95. New York: Springer-Verlag.
Levesque, John, and Gene Wagenbreth. 2010. High Performance Computing: Programming and Applications. Boca Raton: Chapman and Hall/CRC Press.
Liem, C. B., T. Lü, and T. M. Shih. 1995. The Splitting Extrapolation Method. Singapore: World Scientific.
Linnainmaa, Seppo. 1975. Towards accurate statistical estimation of rounding errors in floating-point computations. BIT 15:165–173.
Metcalf, Michael, John Reid, and Malcolm Cohen. 2011. Modern Fortran Explained. Oxford, United Kingdom: Oxford University Press.
Moore, Ramon E. (1979). Methods and Applications of Interval Analysis. Philadelphia: Society for Industrial and Applied Mathematics.
Nakano, Junji. 2012. Parallel computing techniques. In Handbook of Computational Statistics: Concepts and Methods, 2nd revised and updated ed., ed. James E. Gentle, Wolfgang Härdle, and Yuichi Mori, 243–272. Berlin: Springer.
Overton, Michael L. 2001. Numerical Computing with IEEE Floating Point Arithmetic. Philadelphia: Society for Industrial and Applied Mathematics.
Parsian, Mahmoud. 2015. Data Algorithms. Sabastopol, California: O’Reilly Media, Inc.
Stallings, W. T., and T. L. Boullion. 1972. Computation of pseudo-inverse using residue arithmetic. SIAM Review 14:152–163.
Szabó, S., and R. Tanaka. 1967. Residue Arithmetic and Its Application to Computer Technology. New York: McGraw-Hill.
Unicode Consortium. 1990. The Unicode Standard, Worldwide Character Encoding, Version 1.0, Volume 1. Reading, Massachusetts: Addison-Wesley Publishing Company.
Unicode Consortium. 1992. The Unicode Standard, Worldwide Character Encoding, Version 1.0, Volume 2. Reading, Massachusetts: Addison-Wesley Publishing Company.
Walster, G. William. 1996. Stimulating hardware and software support for interval arithmetic. In Applications of Interval Computations, ed. R. Baker Kearfott and Vladik Kreinovich, 405–416. Dordrecht, Netherlands: Kluwer.
Walster, G. William. 2005. The use and implementation of interval data types. In Accuracy and Reliability in Scientific Computing, ed. Bo Einarsson, 173–194. Philadelphia: Society for Industrial and Applied Mathematics.
Wilkinson, J. H. 1959. The evaluation of the zeros of ill-conditioned polynomials. Numerische Mathematik 1:150–180.
Wilkinson, J. H. 1963. Rounding Errors in Algebraic Processes. Englewood Cliffs, New Jersey: Prentice-Hall. (Reprinted by Dover Publications, Inc., New York, 1994).
Author information
Authors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this chapter
Cite this chapter
Gentle, J.E. (2017). Numerical Methods. In: Matrix Algebra. Springer Texts in Statistics. Springer, Cham. https://doi.org/10.1007/978-3-319-64867-5_10
Download citation
DOI: https://doi.org/10.1007/978-3-319-64867-5_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-64866-8
Online ISBN: 978-3-319-64867-5
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)