Abstract
We present successful results, based on testing with nine healthy users, demonstrating an innovative brain-computer interface (BCI) paradigm. The new paradigm utilizes a code- modulated visual evoked potential (cVEP), with a relatively high carrier frequency of 40 Hz (which is about the threshold that human vision can detect) using pseudo-random pattern flashing stimuli. These visual stimuli are very perceptually friendly and, due to their wide frequency spectral patterns, not prone to triggering epileptic seizures. To generate higher frequency stimulation than state-of-the-art steady-state visual evoked potential (SSVEP) or cVEP-based BCIs, we utilize the light-emitting diodes (LEDs) driven from an ARDUINO DUE board with a software generator designed by our team.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Wolpaw J, Wolpaw EW (eds) (2012) Brain-computer interfaces: principles and practice. Oxford University Press, New York, USA
Plum F, Posner JB (1966) The diagnosis of stupor and coma. FA Davis, Philadelphia, PA, USA
Fazel-Rezai R, Allison BZ, Guger C, Sellers EW, Kleih S, Kuebler A (2012) P300 Brain-computer interface: current challenges and emerging trends. Front Hum Neuroeng 5:14. doi: 10.3389/fneng.2012.00014
Rutkowski TM (2015) Brain-robot and speller interfaces using spatial multisensory brain- computer interface paradigms. Front Comput Neurosci Conf Abstr 14. http://www.frontiersin.org/10.3389/conf.fncom.2015.56.00014/event_abstract
Rutkowski TM, Shinoda H (2015) Airborne ultrasonic tactile display contactless brain- computer interface paradigm. Front Hum Neuroscience 16:3–1. http://www.frontiersin.org/human_neuroscience/10.3389/conf.fnhum.2015.218.00016/full
Rutkowski T (2016) Robotic and virtual reality BCIs using spatial tactile and auditory odd-ball paradigms. Front Neurorobotics 10:20. http://journal.frontiersin.org/article/10.3389/fnbot.2016.00020
Guger C, Spataro R, Allison BZ, Heilinger A, Ortner R, Cho W, LaBella V (2017) complete locked-in and locked-in patients: command following assessment and communication with vibro-tactile P300 and motor imagery brain-computer interface tools. Front Neurosci 11:251. http://journal.frontiersin.org/article/10.3389/fnins.2017.00251/full
Lesenfants D, Chatelle C, Saab J, Laureys S, Noirhomme, Q Chapter 6: Neurotechno- logical communication with patients with disorders of consciousness. Neurotechnology and Direct Brain Communication: New Insights and Responsibilities Concerning Speechless But Communicative Subjects, p 85
Bin G, Gao X, Wang Y, Li Y, Hong B, Gao S (2011) A high-speed BCI based on code modulation VEP. J Neural Eng 8(2):025015
Waytowich N, Krusienski D (2015) Spatial decoupling of targets and flashing stimuli for visual brain-computer interfaces. J Neural Eng 12(3):036006. doi: 10.1088/1741-2560/12/3/036006
Reichmann H, Finke A, Ritter H (2016) Using a cVEP-based brain-computer interface to control a virtual agent. IEEE Trans Neural Syst Rehabil Eng 24(6):692–699. doi: 10.1109/TNSRE.2015.2490621
Kapeller C, Kamada K, Ogawa H, Prueckl R, Scharinger J, Guger C (2014) An electrocor- ticographic BCI using code-based VEP for control in video applications: a single-subject study. Front Syst Neurosci 8:139. http://journal.frontiersin.org/article/10.3389/fnsys.2014.00139/full
Aminaka D, Makino S, Rutkowski TM (2015) Classification accuracy improvement of chromatic and high-frequency code-modulated visual evoked potential-based BCI. In: Guo Y, Friston K, Aldo F, Hill S, Peng H (eds) Brain informatics and health. Lecture Notes in Computer Science, vol 9250. Springer International Publishing, London, UK, pp 232–241. http://dx.doi.org/10.1007/978-3-319-23344-4_23
Aminaka D, Shimizu K, Rutkowski TM (2016) Multiuser spatial cVEP BCI direct brain-robot control. In: Proceedings of the Sixth International Brain-Computer Interface Meeting: BCI Past, Present, and Future. Asilomar Conference Center, Pacific Grove, CA USA, Verlag der Technischen Universitaet Graz, 2016, p 70
Aminaka D, Makino S, Rutkowski TM (2015) Chromatic and high-frequency cVEP-based BCI paradigm. In: 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE Engineering in Medicine and Biology Society. Milan, Italy. IEEE Press, p 1906–1909. http://arxiv.org/abs/1506.04461
Aminaka D, Makino S, Rutkowski TM (2014) Chromatic SSVEP BCI paradigm targeting the higher frequency EEG responses. In: Asia-Pacific Signal and Information Processing Association, 2014 Annual Summit and Conference (APSIPA), Angkor Wat, Cambodia, p 1–7. http://dx.doi.org/10.1109/APSIPA.2014.7041761
Sakurada T, Kawase T, Komatsu T, Kansaku K (2014) Use of high-frequency visual stimuli above the critical flicker frequency in a SSVEP-based BMI. Clin Neurophysiol
Rutkowski TM cVEP BCI with 16 commands and 40 Hz carrier frequency, YouTube video available online. https://youtu.be/stS3Qz6ln9E
Hamada K, Mori H, Shinoda H, Rutkowski TM (2015) Airborne ultrasonic tactile display BCI. In: Brain-computer interface research. Springer International Publishing, pp 57–65
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 The Author(s)
About this chapter
Cite this chapter
Aminaka, D., Rutkowski, T.M. (2017). A Sixteen-Command and 40 Hz Carrier Frequency Code-Modulated Visual Evoked Potential BCI. In: Guger, C., Allison, B., Lebedev, M. (eds) Brain-Computer Interface Research. SpringerBriefs in Electrical and Computer Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-64373-1_10
Download citation
DOI: https://doi.org/10.1007/978-3-319-64373-1_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-64372-4
Online ISBN: 978-3-319-64373-1
eBook Packages: Computer ScienceComputer Science (R0)