Nothing Special   »   [go: up one dir, main page]

Skip to main content

Fuzzy Portfolio Selection Models for Dealing with Investor’s Preferences

  • Chapter
  • First Online:
Soft Computing Based Optimization and Decision Models

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 360))

  • 744 Accesses

Abstract

This chapter provides an overview of the authors’ previous work about dealing with investor’s preferences in the portfolio selection problem. We propose a fuzzy model for dealing with the vagueness of investor preferences on the expected return and the assumed risk, and then we consider several modifications to include additional constraints and goals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 15.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arenas Parra, M., Bilbao Terol, A., Rodríguez Uría, M.V.: A fuzzy goal programming approach to portfolio selection. Eur. J. Oper. Res. 133, 287–297 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bundesgesetzblatt: Teil I Nr 62 (2003)

    Google Scholar 

  3. Cadenas, J.M., Carrillo, J.V., Garrido, M.C., Ivorra, C., Liern, V.: Exact and heuristic procedures for solving the fuzzy portfolio selection problem. Fuzzy Optim. Decis. Making 11(1), 29–46 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Calvo, C., Ivorra, C., Liern, V.: Fuzzy portfolio selection with non-financial goals: exploring the efficient frontier. Ann. Oper. Res. (2014). doi:10.1007/s10479-014-1561-2

  5. Calvo, C., Ivorra, C., Liern, V.: Fuzzy portfolio selection including cardinality constraints and integer conditions. J. Optim. Theory Appl. 170(1), 343–355 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chifu, H., Litzenberg, R.H.: Foundations for Financial Economics. North Holland, Amsterdam (1988)

    Google Scholar 

  7. Delgado, M., Verdegay, J.L., Vila, M.A.: Fuzzy linear programming: from classical methods to new applications. In: Delgado, M., Kacprzyk, J., Verdegay, J.L., Vila, M.A. (eds.) Fuzzy Optimization: Recent Advances. Physica Verlag, Heidelberg (1994)

    Google Scholar 

  8. Estrada, J.: The cost of equity in emerging markets: a downside risk approach. Emerg. Mark. Q. 19–30 (2000)

    Google Scholar 

  9. Estrada, J.: Mean-semivariance behavior: downside risk and capital asset pricing. Int. Rev. Econ. Finance 16(2), 169–185 (2007)

    Article  MathSciNet  Google Scholar 

  10. Francis, J.C., Kim, D.: Modern Portfolio Theory: Foundations, Analysis and New Developments. Wiley, New Jersey (2013)

    Google Scholar 

  11. Grinold, R., Kahn, R.: Active Portfolio Management: A Quantitative Approach for Producing Superior Returns and Controling Risk. McGraw Hill, New York (2000)

    Google Scholar 

  12. Hallerbach, W., Ning, H., Soppe, A., Spronk, J.: A framework for managing a portfolio of socially responsible investments. Eur. J. Oper. Res. 153, 517–529 (2004)

    Article  MATH  Google Scholar 

  13. Horniman, M.D., Jobst, N.J., Lucas, C.A., Mitra, G.: Computational aspects of alternative portfolio selection models in the presence of discrete asset choice constraints. Quant. Finance 1, 489–501 (2001)

    Article  MathSciNet  Google Scholar 

  14. Inuiguchi, M., Tanino, T.: Portfolio selection under independent possibilistic information. Fuzzy Sets Syst. 115, 83–92 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  15. Jondeau, E., Rockinger, M.: Optimal portfolio allocation under higher moments. Eur. Financ. Manage. 12, 29–55 (2006)

    Article  Google Scholar 

  16. Jorion, P.: Value at Risk: The New Benchmark for Managing Financial Risk, 3rd edn. McGraw-Hill, New York (2006)

    Google Scholar 

  17. Joro, T., Na, P.: Portfolio performance evaluation in mean-variance-skewness framework. Eur. J. Oper. Res. 175(1), 446–461 (2006)

    Article  MATH  Google Scholar 

  18. Kaplan, P.D., Siegel, B.: Portfolio theory is alive and well. J. Invest. 3(3), 18–23 (1994)

    Article  Google Scholar 

  19. Getting Started With KLD STATS, KLD Research & Analytics, Inc. (2008)

    Google Scholar 

  20. Konno, H., Suzuki, K.: A mean-variance-skewness portfolio selection model. J. Oper. Res. Soc. Jpn. 38, 173–187 (1995)

    Article  MATH  Google Scholar 

  21. Konno, H., Yamazaki, H.: Mean-absolute deviation portfolio optimization model and its applications to Tokyo Stock Market. Manage. Sci. 37, 519–531 (1991)

    Article  Google Scholar 

  22. Lai, Y.J., Hwang, C.L.: Fuzzy Mathematical Programming: Theory and Applications. Springer, Berlin (1992)

    Book  MATH  Google Scholar 

  23. León, T., Liern, V., Vercher, E.: Viability of infeasible portfolio selection problems: a fuzzy approach. Eur. J. Oper. Res. 139, 178–189 (2002)

    Article  MATH  Google Scholar 

  24. León, T., Liern, V., Vercher, E.: Fuzzy Mathematical Programming for Portfolio Management, Financial Modelling. Physica-Verlag, Heidelberg (2000)

    Google Scholar 

  25. León, T., Liern, V., Marco, P., Segura, J.V., Vercher, E.: A downside risk approach for the portfolio selection problem with fuzzy returns. Fuzzy Econ. Rev. 9(1), 61–77 (2004)

    Google Scholar 

  26. Lien, D., Tse, Y.K.: Hedging downside risk: futures vs. options. Int. Rev. Econ. Finance 10, 159–169 (2001)

    Article  Google Scholar 

  27. Markowitz, H.M.: Portfolio selection. J. Finance 7, 79–91 (1952)

    Google Scholar 

  28. Markowitz, H.M.: Portfolio Selection: Efficient Diversification of Investments. Wiley, New York (1959)

    Google Scholar 

  29. Ortí, F.J., Sáez, J., Terceño, A.: On the treatment of uncertainty in portfolio selection. Fuzzy Econ. Rev. 7, 59–80 (2002)

    Google Scholar 

  30. Pfleiderer, P.: Is Modern Portfolio Theory Dead? Come On. http://techcrunch.com/2012/08/11/is-modern-portfolio-theory-dead-come-on/ (2012)

  31. Roy, A.D.: Safety first and the holding of assets. Econometrica 20(3), 431–449 (1952)

    Article  MATH  Google Scholar 

  32. Roy, A.D.: Risk and rank or safety first generalised. Economica 23(91), 214–228 (1956)

    Article  Google Scholar 

  33. Sharpe, W.F.: Capital asset prices: a theory of market equilibrium under conditions of risk. J. Finance 19(3), 425442 (1964)

    Google Scholar 

  34. Sharpe, W.F.: The sharpe ratio. J. Portfolio Manage. 21(1), 49–58 (1994)

    Article  Google Scholar 

  35. Sortino, F.A., Price, L.N.: Performance measurement in a downside risk framework. J. Invest. 3(3), 59–64 (1994)

    Article  Google Scholar 

  36. Stambaugh, F.: Risk and value at risk. Eur. Manage. J. 14(6), 612–621 (1996)

    Article  Google Scholar 

  37. Steuer, R., Qi, Y., Hirschberger, M.: Suitable-portfolio investors, nondominated frontier sensitivity, and the effect of multiple objectives on standard portfolio selection. Ann. Oper. Res. (2007). doi:10.1007/s10479-006-0137-1

  38. Taleb, N.N.: The Black Swan: The Impact of the Highly Improbable. Random House (2007)

    Google Scholar 

  39. Tanaka, H., Guo, P., Türksen, I.B.: Portfolio selection based on fuzzy probabilities and possibility distributions. Fuzzy Sets Syst. 3, 387–397 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  40. SIF: 2012 Report on Socially Responsible Investing Trends in the United States. Social Investment Forum, Washington, DC (2012)

    Google Scholar 

  41. Watada, J.: Fuzzy portfolio selection and its applications to decision making. Tatra Mount. Math. Publ. 13, 219–248 (1997)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vicente Liern .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Calvo, C., Ivorra, C., Liern, V. (2018). Fuzzy Portfolio Selection Models for Dealing with Investor’s Preferences. In: Pelta, D., Cruz Corona, C. (eds) Soft Computing Based Optimization and Decision Models. Studies in Fuzziness and Soft Computing, vol 360. Springer, Cham. https://doi.org/10.1007/978-3-319-64286-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-64286-4_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-64285-7

  • Online ISBN: 978-3-319-64286-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics