Nothing Special   »   [go: up one dir, main page]

Skip to main content

Gradual Numbers and Fuzzy Solutions to Fuzzy Optimization Problems

  • Chapter
  • First Online:
Soft Computing Based Optimization and Decision Models

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 360))

Abstract

This short paper indicates that early examples of fuzzy elements in a fuzzy set, that is, entities that assign elements to membership values, in contrast with fuzzy sets that assign membership values to elements, can be found in papers by Verdegay in the early 1980, following a line of thought opened by Orlovsky. They are so-called fuzzy solutions to fuzzy optimization problems. The notion of fuzzy element, and more specifically gradual number sheds some light on the ambiguous notion of fuzzy number often viewed as generalizing a number while it generalizes intervals. The notion of fuzzy solution is in fact a parameterized solution, in the style of parametric programming. These considerations show the pioneering contributions of Verdegay to the development of fuzzy optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 15.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bellman, R.E., Zadeh, L.A.: Decision making in a fuzzy environment. Manag. Sci. 17, B141–B164 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  2. Carlsson, C., Korhonen, P.: A parametric approach to fuzzy linear programming. Fuzzy Sets Syst. 20, 17–30 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chanas, S.: The use of parametric programming in fuzzy linear programming. Fuzzy Sets Syst. 11, 243–251 (1983)

    Article  MATH  Google Scholar 

  4. Delgado, M., Ruiz, M.D., Sánchez, D., Vila, M.A.: Fuzzy quantification: a state of the art. Fuzzy Sets Syst. 242, 1–30 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dubois, D., Fargier, H., Prade, H.: Possibility theory in constraint satisfaction problems: handling priority, preference and uncertainty. Appl. Intell. 6, 287–309 (1996)

    Article  MATH  Google Scholar 

  6. Dubois, D., Prade, H.: Fuzzy Sets and Systems: Theory and Applications, Mathematics in Science and Engineering Series, vol. 144. Academic Press, New York (1980)

    MATH  Google Scholar 

  7. Dubois, D., Prade, H.: Fuzzy elements in a fuzzy set. Soft Comput. 12, 165–175 (2008)

    Article  MATH  Google Scholar 

  8. Fortin, J., Dubois, D., Fargier, H.: Gradual numbers and their application to fuzzy interval analysis. IEEE Trans. Fuzzy Syst. 16, 388–402 (2008)

    Article  Google Scholar 

  9. Martin, T.P., Azvine, B.: The X-mu approach: Fuzzy quantities, fuzzy arithmetic and fuzzy association rules. In: Proceedings of IEEE Symposium on Foundations of Computational Intelligence (FOCI), pp. 24–29 (2013)

    Google Scholar 

  10. Meseguer P., Rossi F., Schiex T.: Soft Constraints, Chapter 9 in Foundations of Artificial Intelligence, vol. 2, pp. 281–328. Elsevier (2006)

    Google Scholar 

  11. Molodtsov, D.: Soft set theory—first results. Comput. Math. Appl. 37(4/5), 19–31 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  12. Negoita, C.V., Ralescu, D.A.: Applications of Fuzzy Sets to Systems Analysis. Birkhauser, Basel (1975)

    Book  MATH  Google Scholar 

  13. Orlovsky, S.A.: Programming with fuzzy constraint sets. Kybernetes 6, 197–201 (1977)

    Article  MATH  Google Scholar 

  14. Sanchez, D., Delgado, M., Vila, M.A., Chamorro-Martinez, J.: On a non-nested level-based representation of fuzziness. Fuzzy Sets Syst. 192, 159–175 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Tanaka, H., Okuda, T., Asai, K.: On fuzzy mathematical programming. J. Cybernet. 3, 37–46 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  16. Verdegay, J.L.: Fuzzy mathematical programming. In: Gupta, M.M., Sanchez, E. (eds.) Fuzzy Information and Decision Processes, North Holland, pp. 231–237 (1982)

    Google Scholar 

  17. Verdegay, J.L.: A dual approach to solve the fuzzy linear programming problem. Fuzzy Sets Syst. 14(2), 131–141 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  18. Verdegay, J.L.: Progress on fuzzy mathematical programming: a personal perspective. Fuzzy Sets Syst. 281, 219–226 (2015)

    Article  MathSciNet  Google Scholar 

  19. Zimmermann, H.-J.: Description and optimization of fuzzy systems. Int. J. General Syst. 2, 209–215 (1975)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Didier Dubois .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Dubois, D., Prade, H. (2018). Gradual Numbers and Fuzzy Solutions to Fuzzy Optimization Problems. In: Pelta, D., Cruz Corona, C. (eds) Soft Computing Based Optimization and Decision Models. Studies in Fuzziness and Soft Computing, vol 360. Springer, Cham. https://doi.org/10.1007/978-3-319-64286-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-64286-4_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-64285-7

  • Online ISBN: 978-3-319-64286-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics