Nothing Special   »   [go: up one dir, main page]

Skip to main content

An Experimental Study on the Ply Number of Straight-Line Drawings

  • Conference paper
  • First Online:
WALCOM: Algorithms and Computation (WALCOM 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10167))

Included in the following conference series:

  • 802 Accesses

Abstract

The ply number of a drawing is a new criterion of interest for graph drawing. Informally, the ply number of a straight-line drawing of a graph is defined as the maximum number of overlapping disks, where each disk is associated with a vertex and has a radius that is half the length of the longest edge incident to that vertex. This paper reports the results of an extensive experimental study that attempts to estimate correlations between the ply numbers and other aesthetic quality metrics for a graph layout, such as stress, edge-length uniformity, and edge crossings. We also investigate the performances of several graph drawing algorithms in terms of ply number, and provides new insights on the theoretical gap between lower and upper bounds on the ply number of k-ary trees.

Research supported in part by the MIUR project AMANDA “Algorithmics for MAssive and Networked DAta”, prot. 2012C4E3KT_001. Work on this problem began at the NII Shonan Meeting Big Graph Drawing: Metrics and Methods, Jan. 12–15, 2015. We thank M. Kaufmann and his staff in the University of Tübingen for sharing their code to compute ply number. We also thank A. Wolff and F. Montecchiani for many useful discussions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Angelini, P., Bekos, M.A., Bruckdorfer, T., Hančl, J., Kaufmann, M., Kobourov, S., Symvonis, A., Valtr, P.: Low ply drawings of trees. In: Hu, Y., Nöllenburg, M. (eds.) GD 2016. LNCS, vol. 9801, pp. 236–248. Springer, Heidelberg (2016). doi:10.1007/978-3-319-50106-2_19

    Chapter  Google Scholar 

  2. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bastian, M., Heymann, S., Jacomy, M.: Gephi: an open source software for exploring and manipulating networks (2009). http://www.aaai.org/ocs/index.php/ICWSM/09/paper/view/154

  4. Buchheim, C., Jünger, M., Leipert, S.: Drawing rooted trees in linear time. Softw.: Pract. Exp. 36(6), 651–665 (2006)

    Google Scholar 

  5. Chen, L., Buja, A.: Stress functions for nonlinear dimension reduction, proximity analysis, and graph drawing. J. Mach. Learn. Res. 14(1), 1145–1173 (2013)

    MathSciNet  MATH  Google Scholar 

  6. Chimani, M., Gutwenger, C., Jünger, M., Klau, G.W., Klein, K., Mutzel, P.: The open graph drawing framework (OGDF). In: Tamassia, R. (ed.) Handbook of Graph Drawing and Visualization, pp. 543–569. CRC Press, Boca Raton (2013)

    Google Scholar 

  7. Chrobak, M., Kant, G.: Convex grid drawings of 3-connected planar graphs. Int. J. Comput. Geom. Appl. 07(03), 211–223 (1997)

    Article  MathSciNet  Google Scholar 

  8. Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing. Prentice Hall, Upper Saddle River (1999)

    MATH  Google Scholar 

  9. Di Giacomo, E., Didimo, W., Hong, S.H., Kaufmann, M., Kobourov, S.G., Liotta, G., Misue, K., Symvonis, A., Yen, H.C.: Low ply graph drawing. In: IISA 2015, pp. 1–6. IEEE (2015)

    Google Scholar 

  10. Didimo, W., Liotta, G.: Mining graph data. In: Cook, D.J., Holder, L.B. (eds.) Graph Visualization and Data Mining, pp. 35–64. Wiley, Hoboken (2007)

    Google Scholar 

  11. Dwyer, T., Lee, B., Fisher, D., Quinn, K.I., Isenberg, P., Robertson, G.G., North, C.: A comparison of user-generated and automatic graph layouts. IEEE Trans. Vis. Comput. Graph. 15(6), 961–968 (2009)

    Article  Google Scholar 

  12. Eades, P.: A heuristics for graph drawing. Congressus Numerantium 42, 146–160 (1984)

    MathSciNet  Google Scholar 

  13. Eppstein, D., Goodrich, M.T.: Studying (non-planar) road networks through an algorithmic lens. In: GIS 2008, pp. 1–10. ACM (2008)

    Google Scholar 

  14. de Fraysseix, H., Pach, J., Pollack, R.: How to draw a planar graph on a grid. Combinatorica 10(1), 41–51 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  15. Frick, A., Ludwig, A., Mehldau, H.: A fast adaptive layout algorithm for undirected graphs (extended abstract and system demonstration). In: Tamassia, R., Tollis, I.G. (eds.) GD 1994. LNCS, vol. 894, pp. 388–403. Springer, Heidelberg (1995). doi:10.1007/3-540-58950-3_393

    Chapter  Google Scholar 

  16. Fruchterman, T.M.J., Reingold, E.M.: Graph drawing by force-directed placement. Softw.: Pract. Exp. 21(11), 1129–1164 (1991)

    Google Scholar 

  17. Gansner, E.R., Koren, Y., North, S.: Graph drawing by stress majorization. In: Pach, J. (ed.) GD 2004. LNCS, vol. 3383, pp. 239–250. Springer, Heidelberg (2005). doi:10.1007/978-3-540-31843-9_25

    Chapter  Google Scholar 

  18. Hachul, S., Jünger, M.: Drawing large graphs with a potential-field-based multilevel algorithm. In: Pach, J. (ed.) GD 2004. LNCS, vol. 3383, pp. 285–295. Springer, Heidelberg (2005). doi:10.1007/978-3-540-31843-9_29

    Chapter  Google Scholar 

  19. Hachul, S., Jünger, M.: Large-graph layout algorithms at work: an experimental study. J. Graph Algorithms Appl. 11(2), 345–369 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hagberg, A.A., Schult, D.A., Swart, P.J.: Exploring network structure, dynamics, and function using networkX. In: Varoquaux, G., Vaught, T., Millman, J. (eds.) Proceedings of the 7th Python in Science Conference, Pasadena, CA, USA, pp. 11–15 (2008)

    Google Scholar 

  21. Huang, W., Hong, S.H., Eades, P.: Effects of sociogram drawing conventions and edge crossings in social network visualization. J. Graph Algorithms Appl. 11(2), 397–429 (2007)

    Article  MathSciNet  Google Scholar 

  22. Jünger, M., Mutzel, P. (eds.): Graph Drawing Software. Springer, Heidelberg (2003)

    MATH  Google Scholar 

  23. Kamada, T., Kawai, S.: An algorithm for drawing general undirected graphs. Inf. Process. Lett. 31(1), 7–15 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kobourov, S.G.: Force-directed drawing algorithms. In: Tamassia, R. (ed.) Handbook of Graph Drawing and Visualization, pp. 383–408. CRC Press, Boca Raton (2013)

    Google Scholar 

  25. Kobourov, S.G., Pupyrev, S., Saket, B.: Are crossings important for drawing large graphs? In: Duncan, C., Symvonis, A. (eds.) GD 2014. LNCS, vol. 8871, pp. 234–245. Springer, Heidelberg (2014). doi:10.1007/978-3-662-45803-7_20

    Google Scholar 

  26. Kruskal, J.B., Wish, M.: Multidimensional Scaling. Sage Press, Thousand Oaks (1978)

    Book  Google Scholar 

  27. Noack, A.: Energy models for graph clustering. J. Graph Algorithms Appl. 11(2), 453–480 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  28. Prüfer, H.: Neuer beweis eines satzesüber permutationen. Arch. Math. Phys. 27, 742–744 (1918)

    MATH  Google Scholar 

  29. Purchase, H.C.: Effective information visualisation: a study of graph drawing aesthetics and algorithms. Interact. Comput. 13(2), 147–162 (2000)

    Article  Google Scholar 

  30. Purchase, H.C., Carrington, D.A., Allder, J.A.: Empirical evaluation of aesthetics-based graph layout. Empir. Softw. Eng. 7(3), 233–255 (2002)

    Article  MATH  Google Scholar 

  31. Reingold, E.M., Tilford, J.S.: Tidier drawings of trees. IEEE Trans. Softw. Eng. SE-7(2), 223–228 (1981)

    Google Scholar 

  32. Spearman, C.: The proof and measurement of association between two things. Am. J. Psychol. 15(1), 72–99 (1904)

    Article  Google Scholar 

  33. Tamassia, R. (ed.): Handbook of Graph Drawing and Visualization. CRC Press, Boca Raton (2013)

    MATH  Google Scholar 

  34. Walker, J.Q.: A node-positioning algorithm for general trees. Softw.: Pract. Exp. 20(7), 685–705 (1990)

    Google Scholar 

  35. Ware, C., Purchase, H.C., Colpoys, L., McGill, M.: Cognitive measurements of graph aesthetics. Inf. Vis. 1(2), 103–110 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felice De Luca .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

De Luca, F., Di Giacomo, E., Didimo, W., Kobourov, S., Liotta, G. (2017). An Experimental Study on the Ply Number of Straight-Line Drawings. In: Poon, SH., Rahman, M., Yen, HC. (eds) WALCOM: Algorithms and Computation. WALCOM 2017. Lecture Notes in Computer Science(), vol 10167. Springer, Cham. https://doi.org/10.1007/978-3-319-53925-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-53925-6_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-53924-9

  • Online ISBN: 978-3-319-53925-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics