Abstract
The ply number of a drawing is a new criterion of interest for graph drawing. Informally, the ply number of a straight-line drawing of a graph is defined as the maximum number of overlapping disks, where each disk is associated with a vertex and has a radius that is half the length of the longest edge incident to that vertex. This paper reports the results of an extensive experimental study that attempts to estimate correlations between the ply numbers and other aesthetic quality metrics for a graph layout, such as stress, edge-length uniformity, and edge crossings. We also investigate the performances of several graph drawing algorithms in terms of ply number, and provides new insights on the theoretical gap between lower and upper bounds on the ply number of k-ary trees.
Research supported in part by the MIUR project AMANDA “Algorithmics for MAssive and Networked DAta”, prot. 2012C4E3KT_001. Work on this problem began at the NII Shonan Meeting Big Graph Drawing: Metrics and Methods, Jan. 12–15, 2015. We thank M. Kaufmann and his staff in the University of Tübingen for sharing their code to compute ply number. We also thank A. Wolff and F. Montecchiani for many useful discussions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Angelini, P., Bekos, M.A., Bruckdorfer, T., Hančl, J., Kaufmann, M., Kobourov, S., Symvonis, A., Valtr, P.: Low ply drawings of trees. In: Hu, Y., Nöllenburg, M. (eds.) GD 2016. LNCS, vol. 9801, pp. 236–248. Springer, Heidelberg (2016). doi:10.1007/978-3-319-50106-2_19
Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)
Bastian, M., Heymann, S., Jacomy, M.: Gephi: an open source software for exploring and manipulating networks (2009). http://www.aaai.org/ocs/index.php/ICWSM/09/paper/view/154
Buchheim, C., Jünger, M., Leipert, S.: Drawing rooted trees in linear time. Softw.: Pract. Exp. 36(6), 651–665 (2006)
Chen, L., Buja, A.: Stress functions for nonlinear dimension reduction, proximity analysis, and graph drawing. J. Mach. Learn. Res. 14(1), 1145–1173 (2013)
Chimani, M., Gutwenger, C., Jünger, M., Klau, G.W., Klein, K., Mutzel, P.: The open graph drawing framework (OGDF). In: Tamassia, R. (ed.) Handbook of Graph Drawing and Visualization, pp. 543–569. CRC Press, Boca Raton (2013)
Chrobak, M., Kant, G.: Convex grid drawings of 3-connected planar graphs. Int. J. Comput. Geom. Appl. 07(03), 211–223 (1997)
Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing. Prentice Hall, Upper Saddle River (1999)
Di Giacomo, E., Didimo, W., Hong, S.H., Kaufmann, M., Kobourov, S.G., Liotta, G., Misue, K., Symvonis, A., Yen, H.C.: Low ply graph drawing. In: IISA 2015, pp. 1–6. IEEE (2015)
Didimo, W., Liotta, G.: Mining graph data. In: Cook, D.J., Holder, L.B. (eds.) Graph Visualization and Data Mining, pp. 35–64. Wiley, Hoboken (2007)
Dwyer, T., Lee, B., Fisher, D., Quinn, K.I., Isenberg, P., Robertson, G.G., North, C.: A comparison of user-generated and automatic graph layouts. IEEE Trans. Vis. Comput. Graph. 15(6), 961–968 (2009)
Eades, P.: A heuristics for graph drawing. Congressus Numerantium 42, 146–160 (1984)
Eppstein, D., Goodrich, M.T.: Studying (non-planar) road networks through an algorithmic lens. In: GIS 2008, pp. 1–10. ACM (2008)
de Fraysseix, H., Pach, J., Pollack, R.: How to draw a planar graph on a grid. Combinatorica 10(1), 41–51 (1990)
Frick, A., Ludwig, A., Mehldau, H.: A fast adaptive layout algorithm for undirected graphs (extended abstract and system demonstration). In: Tamassia, R., Tollis, I.G. (eds.) GD 1994. LNCS, vol. 894, pp. 388–403. Springer, Heidelberg (1995). doi:10.1007/3-540-58950-3_393
Fruchterman, T.M.J., Reingold, E.M.: Graph drawing by force-directed placement. Softw.: Pract. Exp. 21(11), 1129–1164 (1991)
Gansner, E.R., Koren, Y., North, S.: Graph drawing by stress majorization. In: Pach, J. (ed.) GD 2004. LNCS, vol. 3383, pp. 239–250. Springer, Heidelberg (2005). doi:10.1007/978-3-540-31843-9_25
Hachul, S., Jünger, M.: Drawing large graphs with a potential-field-based multilevel algorithm. In: Pach, J. (ed.) GD 2004. LNCS, vol. 3383, pp. 285–295. Springer, Heidelberg (2005). doi:10.1007/978-3-540-31843-9_29
Hachul, S., Jünger, M.: Large-graph layout algorithms at work: an experimental study. J. Graph Algorithms Appl. 11(2), 345–369 (2007)
Hagberg, A.A., Schult, D.A., Swart, P.J.: Exploring network structure, dynamics, and function using networkX. In: Varoquaux, G., Vaught, T., Millman, J. (eds.) Proceedings of the 7th Python in Science Conference, Pasadena, CA, USA, pp. 11–15 (2008)
Huang, W., Hong, S.H., Eades, P.: Effects of sociogram drawing conventions and edge crossings in social network visualization. J. Graph Algorithms Appl. 11(2), 397–429 (2007)
Jünger, M., Mutzel, P. (eds.): Graph Drawing Software. Springer, Heidelberg (2003)
Kamada, T., Kawai, S.: An algorithm for drawing general undirected graphs. Inf. Process. Lett. 31(1), 7–15 (1989)
Kobourov, S.G.: Force-directed drawing algorithms. In: Tamassia, R. (ed.) Handbook of Graph Drawing and Visualization, pp. 383–408. CRC Press, Boca Raton (2013)
Kobourov, S.G., Pupyrev, S., Saket, B.: Are crossings important for drawing large graphs? In: Duncan, C., Symvonis, A. (eds.) GD 2014. LNCS, vol. 8871, pp. 234–245. Springer, Heidelberg (2014). doi:10.1007/978-3-662-45803-7_20
Kruskal, J.B., Wish, M.: Multidimensional Scaling. Sage Press, Thousand Oaks (1978)
Noack, A.: Energy models for graph clustering. J. Graph Algorithms Appl. 11(2), 453–480 (2007)
Prüfer, H.: Neuer beweis eines satzesüber permutationen. Arch. Math. Phys. 27, 742–744 (1918)
Purchase, H.C.: Effective information visualisation: a study of graph drawing aesthetics and algorithms. Interact. Comput. 13(2), 147–162 (2000)
Purchase, H.C., Carrington, D.A., Allder, J.A.: Empirical evaluation of aesthetics-based graph layout. Empir. Softw. Eng. 7(3), 233–255 (2002)
Reingold, E.M., Tilford, J.S.: Tidier drawings of trees. IEEE Trans. Softw. Eng. SE-7(2), 223–228 (1981)
Spearman, C.: The proof and measurement of association between two things. Am. J. Psychol. 15(1), 72–99 (1904)
Tamassia, R. (ed.): Handbook of Graph Drawing and Visualization. CRC Press, Boca Raton (2013)
Walker, J.Q.: A node-positioning algorithm for general trees. Softw.: Pract. Exp. 20(7), 685–705 (1990)
Ware, C., Purchase, H.C., Colpoys, L., McGill, M.: Cognitive measurements of graph aesthetics. Inf. Vis. 1(2), 103–110 (2002)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
De Luca, F., Di Giacomo, E., Didimo, W., Kobourov, S., Liotta, G. (2017). An Experimental Study on the Ply Number of Straight-Line Drawings. In: Poon, SH., Rahman, M., Yen, HC. (eds) WALCOM: Algorithms and Computation. WALCOM 2017. Lecture Notes in Computer Science(), vol 10167. Springer, Cham. https://doi.org/10.1007/978-3-319-53925-6_11
Download citation
DOI: https://doi.org/10.1007/978-3-319-53925-6_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-53924-9
Online ISBN: 978-3-319-53925-6
eBook Packages: Computer ScienceComputer Science (R0)