Nothing Special   »   [go: up one dir, main page]

Skip to main content

Towards Simulating Data-Driven Brain Models at the Point Neuron Level on Petascale Computers

  • Conference paper
  • First Online:
High-Performance Scientific Computing (JHPCS 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10164))

Abstract

We present a solution to two important problems that arise in the simulation of large data-driven neural networks: (a) efficient loading of network descriptions and (b) efficient instantiation of the network by executing the model specification. To address the first problem, we present a general data-format PointBrainH5, to store the network information along with the parallel-distributed RTC algorithm to efficiently load and instantiate a network model. We test data-format and algorithm on a data-driven simulation of the size of a full mouse brain on 4 racks of a IBM Blue Gene/Q. The model comprised 75 million neurons with 664 billion synapses and occupied 15 TB on disk. Loading and instantiation of the network on 4 racks of the BlueGene/Q took 30 min. We observe good scaling for up to 16,384 nodes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gewaltig, M.-O., Diesmann, M.: NEST (neural simulation tool). Scholarpedia 2(4), 1430 (2007)

    Article  Google Scholar 

  2. Jones, A.R., Overly, C.C., Sunkin, S.M.: The Allen brain atlas: 5 years and beyond. Nat. Rev. Neurosci. 10(11), 821–828 (2009)

    Article  Google Scholar 

  3. Stephan, M., Docter, J.: JUQUEEN: IBM Blue Gene/Q Supercomputer system at the Jlich supercomputing centre. J. Large-Scale Res. Facil. JLSRF 1, 1 (2015)

    Article  Google Scholar 

  4. Kunkel, S., et al.: Spiking network simulation code for petascale computers. Front. Neuroinformatics 8, 78 (2014)

    Article  Google Scholar 

  5. Markram, H., Muller, E., Ramaswamy, S., Reimann, M.W., Abdellah, M., Sanchez, C.A., Ailamaki, A., Alonso-Nanclares, L., Antille, N., Arsever, S., et al.: Reconstruction and simulation of neocortical microcircuitry. Cell 163(2), 456–492 (2015)

    Article  Google Scholar 

  6. Brette, R., Gerstner, W.: Adaptive exponential integrate-and-fire model as an effective description of neural activity. J. Neurophysiol. 94(5), 3637–3642 (2005)

    Article  Google Scholar 

  7. Fuhrmann, G., Segev, I., Markram, H., Tsodyks, M.: Coding of temporal information by activity-dependent synapses. J. Neurophysiol. 87(1), 140–148 (2002)

    Google Scholar 

  8. Izhikevich, E.M., Edelman, G.M.: Large-scale model of mammalian thalamocortical systems. Proc. Natl. Acad. Sci. 105(9), 3593–3598 (2008)

    Article  Google Scholar 

  9. Ananthanarayanan, R., et al.: The cat is out of the bag: cortical simulations with 109 neurons, 1013 synapses. In: Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis. IEEE (2009)

    Google Scholar 

  10. Blue Brain Project. Blue Brain 4 (2016). http://www.cscs.ch/computers/blue_brain_4/index.html

  11. The HDF Group Hierarchical Data Format, version 5 (2016). http://www.hdfgroup.org/HDF5

  12. Schumann, T., Delalondre, F.: HDF5 import module for the spiking neuronal simulator NEST. In: JUQUEEN Extreme Scaling Workshop, no. FZJ-2016-01816, pp. 43–48 (2016)

    Google Scholar 

  13. Eroe, C., et al.: Estimation of neuron numbers and densities of the mouse brain (in preparation)

    Google Scholar 

  14. Bos, H., et al.: NEST 2.10.0. Zenodo (2015). doi:10.5281/zenodo.44222

  15. Schumann, T.: Nest-simulator, branch:h5kernel (2016). GitHub repository. https://github.com/tillschumann/nest-simulator/tree/h5kernel

  16. Bos, H., et al.: Nest-simulator, ref:4b0f360 (2016). GitHub repository. https://github.com/nest/nest-simulator

Download references

Acknowledgement

The authors of this paper would like to gratefully thank both the HPC and the Visualization teams of the Blue Brain Project, for the many discussions and feedback provided. This work has been funded by both the EPFL Blue Brain Project (funded by the Swiss ETH board) and the European Union Seventh Framework Program (FP7/20072013) under grant agreement no. 604102 (HBP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Till Schumann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Schumann, T., Erő, C., Gewaltig, MO., Delalondre, F.J. (2017). Towards Simulating Data-Driven Brain Models at the Point Neuron Level on Petascale Computers. In: Di Napoli, E., Hermanns, MA., Iliev, H., Lintermann, A., Peyser, A. (eds) High-Performance Scientific Computing. JHPCS 2016. Lecture Notes in Computer Science(), vol 10164. Springer, Cham. https://doi.org/10.1007/978-3-319-53862-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-53862-4_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-53861-7

  • Online ISBN: 978-3-319-53862-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics