Abstract
We reproduce recent research results combining semantic and information retrieval methods. Additionally, we expand the existing state of the art by combining the semantic representations with IR methods from the probabilistic relevance framework. We demonstrate a significant increase in performance, as measured by standard evaluation metrics.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
References
Amati, G., Van Rijsbergen, C.J.: Probabilistic models of information retrieval based on measuring the divergence from randomness. TOIS (2002)
Bergamaschi, S., Guerra, F., Vincini, M.: A peer-to-peer information system for the semantic web. In: Moro, G., Sartori, C., Singh, M.P. (eds.) AP2PC 2003. LNCS (LNAI), vol. 2872, pp. 113–122. Springer, Heidelberg (2004). doi:10.1007/978-3-540-25840-7_12
Corcoglioniti, F., Dragoni, M., Rospocher, M., Aprosio, A.P.: Knowledge extraction for information retrieval. In: Sack, H., Blomqvist, E., d’Aquin, M., Ghidini, C., Ponzetto, S.P., Lange, C. (eds.) ESWC 2016. LNCS, vol. 9678, pp. 317–333. Springer, Heidelberg (2016). doi:10.1007/978-3-319-34129-3_20
Corcoglioniti, F., Rospocher, M., Aprosio, A.P.: A 2-phase frame-based knowledge extraction framework. In: Proceeding of ACM Symposium on Applied Computing (SAC 2016), pp. 354–361 (2016)
Gangemi, A.: A comparison of knowledge extraction tools for the semantic web. In: Cimiano, P., Corcho, O., Presutti, V., Hollink, L., Rudolph, S. (eds.) ESWC 2013. LNCS, vol. 7882, pp. 351–366. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38288-8_24
Gonzalo, J., Verdejo, F., Chugur, I., Cigarrán, J.M.: Indexing with wordnet synsets can improve text retrieval. CoRR cmp-lg/9808002 (1998). http://arxiv.org/abs/cmp-lg/9808002
Jones, K.S.: Information Retrieval Experiment. Butterworths (1981)
Lafferty, J.D., Zhai, C.: Probabilistic relevance models based on document and query generation. In: Language modeling and information retrieval (2003)
Lipani, A., Lupu, M., Hanbury, A., Aizawa, A.: Verboseness fission for BM25 document length normalization. In: Proceeding of ICTIR (2015)
Liu, T.Y.: Learning to rank for information retrieval. Found. Trends Inf. Retrieval 3(3), 225–331 (2009)
Maron, M.E., Kuhns, J.L.: On relevance, probabilistic indexing and information retrieval. J. ACM 7(3), 216–244 (1960)
Nadeau, D., Sekine, S.: A survey of named entity recognition and classification. Lingvisticae Investigationes 30(1), 3–26 (2007)
Ponte, J.M., Croft, W.B.: A language modeling approach to information retrieval. In: Proceedings of the 21st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 1998, pp. 275–281, NY, USA (1998). http://doi.acm.org/10.1145/290941.291008
Robertson, S., Zaragoza, H.: The probabilistic relevance framework: BM25 and beyond. Found. Trends Inf. Retrieval 3(4), 333–389 (2009)
Robertson, S.E.: The Probability Ranking Principle in IR. Journal of Documentation 33(4) (1977)
Tsatsaronis, G., Panagiotopoulou, V.: A generalized vector space model for text retrieval based on semantic relatedness. In: Lascarides, A., Gardent, C., Nivre, J. (eds.) EACL 2009, 12th Conference of the European Chapter of the Association for Computational Linguistics, Proceedings of the Conference, Athens, Greece, March 30 - April 3, 2009, pp. 70–78. The Association for Computer Linguistics (2009). http://www.aclweb.org/anthology/E09-3009
Van Rijsbergen, C.J.: Information Retrieval, 2nd edn. Butterworth, London (1979). http://www.dcs.gla.ac.uk/Keith/Preface.html
Waitelonis, J., Exeler, C., Sack, H.: Linked data enabled generalized vector space model to improve document retrieval. In: Proceeding of 3rd International Workshop on NLP & DBpedia 2015, co-located with ISWC (2015)
Yu, J.X., Qin, L., Chang, L.: Keyword Search in Databases. Morgan & Claypool Pub, Synthesis Lectures on Data Management (2010)
Zhai, C.: Statistical language models for information retrieval a critical review. Found. Trends Inf. Retr. 2(3), 137–213 (2008). http://dx.doi.org/10.1561/1500000008
Acknowledgments
This research is partially supported by the ADmIRE Project (FWF P25905-N23) project and the COST IC1302 KEYSTONE Action.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Azzopardi, J., Benedetti, F., Guerra, F., Lupu, M. (2017). Back to the Sketch-Board: Integrating Keyword Search, Semantics, and Information Retrieval. In: Calì, A., Gorgan, D., Ugarte, M. (eds) Semantic Keyword-Based Search on Structured Data Sources. IKC 2016. Lecture Notes in Computer Science(), vol 10151. Springer, Cham. https://doi.org/10.1007/978-3-319-53640-8_5
Download citation
DOI: https://doi.org/10.1007/978-3-319-53640-8_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-53639-2
Online ISBN: 978-3-319-53640-8
eBook Packages: Computer ScienceComputer Science (R0)