Nothing Special   »   [go: up one dir, main page]

Skip to main content

The 2016 Signal Separation Evaluation Campaign

  • Conference paper
  • First Online:
Latent Variable Analysis and Signal Separation (LVA/ICA 2017)

Abstract

In this paper, we report the results of the 2016 community-based Signal Separation Evaluation Campaign (SiSEC 2016). This edition comprises four tasks. Three focus on the separation of speech and music audio recordings, while one concerns biomedical signals. We summarize these tasks and the performance of the submitted systems, as well as provide a small discussion concerning future trends of SiSEC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://sisec.inria.fr.

  2. 2.

    www.cambridge-mt.com/ms-mtk.htm.

  3. 3.

    More info at github.com/faroit/dsdtools.

  4. 4.

    sisec17.audiolabs-erlangen.de.

References

  1. Ono, N., Koldovsky, Z., Miyabe, S., Ito, N.: The 2013 signal separation evaluation campaign. In: Proceedings of MLSP, pp. 1–6, September 2013

    Google Scholar 

  2. Ono, N., Rafii, Z., Kitamura, D., Ito, N., Liutkus, A.: The 2015 signal separation evaluation campaign. In: Vincent, E., Yeredor, A., Koldovský, Z., Tichavský, P. (eds.) LVA/ICA 2015. LNCS, vol. 9237, pp. 387–395. Springer, Heidelberg (2015). doi:10.1007/978-3-319-22482-4_45

    Google Scholar 

  3. Vincent, E., Griboval, R., Févotte, C.: Performance measurement in blind audio source separation. IEEE Trans. ASLP 14(4), 1462–1469 (2006)

    Google Scholar 

  4. Emiya, V., Vincent, E., Harlander, N., Hohmann, V.: Subjective and objective quality assessment of audio source separation. IEEE Trans. ASLP 19(7), 2046–2057 (2011)

    Google Scholar 

  5. Chan, T-S., Yeh, T-C., Fan, Z-C., Chen, H-W., Su, L., Yang, Y-H., Jang, R.: Vocal activity informed singing voice separation with the iKala dataset. In: Proceedings of ICASSP, pp. 718–722, April 2015

    Google Scholar 

  6. Durrieu, J.-L., David, B., Richard, G.: A musically motivated mid-level representation for pitch estimation and musical audio source separation. IEEE J. Sel. Top. Sig. Process. 5(6), 1180–1191 (2011)

    Article  Google Scholar 

  7. Huang, P., Chen, S., Smaragdis, P., Hasegawa-Johnson, M.: Singing-voice separation from monaural recordings using robust principal component analysis. In: Proceedings of ICASSP, pp. 57–60, March 2012

    Google Scholar 

  8. Liutkus, A., FitzGerald, D., Rafii, Z., Daudet, L.: Scalable audio separation with light kernel additive modelling. In: Proceedings of ICASSP, pp. 76–80, April 2015

    Google Scholar 

  9. Nugraha, A., Liutkus, A., Vincent, E.: Multichannel music separation with deep neural networks. In: Proceedings of EUSIPCO (2016)

    Google Scholar 

  10. Ozerov, A., Vincent, E., Bimbot, F.: A general flexible framework for the handling of prior information in audio source separation. IEEE Trans. ASLP 20(4), 1118–1133 (2012)

    Google Scholar 

  11. Rafii, Z., Pardo, B.: REpeating pattern extraction technique (REPET): a simple method for music/voice separation. IEEE Trans. ASLP 21(1), 71–82 (2013)

    Google Scholar 

  12. Liutkus, A., Rafii, Z., Badeau, R., Pardo, B., Richard, G.: Adaptive filtering for music/voice separation exploiting the repeating musical structure. In: Proceedings of ICASSP, pp. 53–56, March 2012

    Google Scholar 

  13. Rafii, Z., Pardo, B.: Music/voice separation using the similarity matrix. In: Proceedings of ISMIR, pp. 583–588, October 2012

    Google Scholar 

  14. Wood, S., Rouat, J.: Blind speech separation with GCC-NMF. In: Proceedings of Interspeech (2016)

    Google Scholar 

  15. Cho, J., Yoo, C.D.: Underdetermined convolutive BSS: Bayes risk minimization based on a mixture of super-Gaussian posterior approximation. IEEE Trans. Audio Speech Lang. Process. 23(5), 828–839 (2011)

    Article  Google Scholar 

  16. Adiloglu, K., Vincent, E.: “Variational Bayesian inference for source separation and robust feature extraction,” Technical report, INRIA (2012). https://hal.inria.fr/hal-00726146

  17. Hirasawa, Y., Yasuraoka, N., Takahashi, T., Ogata, T., Okuno, H.G.: A GMM sound source model for blind speech separation in under-determined conditions. In: Theis, F., Cichocki, A., Yeredor, A., Zibulevsky, M. (eds.) LVA/ICA 2012. LNCS, vol. 7191, pp. 446–453. Springer, Heidelberg (2012). doi:10.1007/978-3-642-28551-6_55

    Chapter  Google Scholar 

  18. Iso, K., Araki, S., Makino, S., Nakatani, T., Sawada, H., Yamada, T., Nakamura, A.: Blind source separation of mixed speech in a high reverberation environment. In: Proceedings of Hands-free Speech Communication and Microphone Arrays, pp. 36–39 (2011)

    Google Scholar 

  19. Cho, J., Choi, J., Yoo, C.D.: Underdetermined convolutive blind source separation using a novel mixing matrix estimation and MMSE-based source estimation. In: Proceedings of IEEE MLSP (2011)

    Google Scholar 

  20. Nesta, F., Omologo, M.: Convolutive underdetermined source separation through weighted interleaved ICA and spatio-temporal source correlation. In: Theis, F., Cichocki, A., Yeredor, A., Zibulevsky, M. (eds.) LVA/ICA 2012. LNCS, vol. 7191, pp. 222–230. Springer, Heidelberg (2012). doi:10.1007/978-3-642-28551-6_28

    Chapter  Google Scholar 

  21. Knapp, C.H., Carter, G.C.: The generalized correlation method for estimation of time delay. IEEE Trans. Acousti. Speech Sig. Process. 24(4), 320–327 (1976)

    Article  Google Scholar 

  22. Lee, D.D., Seung, H.S.: Learning the parts of objects by non-negative matrix factorization. Nature 401, 788–791 (1999)

    Article  Google Scholar 

  23. Blandin, C., Ozerov, A., Vincent, E.: Multi-source TDOA estimation in reverberant audio using angular spectra and clustering. Sig. Process. 92(8), 1950–1960 (2012)

    Article  Google Scholar 

  24. Duong, H.-T.T., Nguyen, Q.-C., Nguyen, C.-P., Tran, T.-H., Duong, N.Q.K.: Speech enhancement based on nonnegative matrix factorization with mixed group sparsity constraint. In: Proceedings of ACM International Symposium on Information and Communication Technology, pp. 247–251 (2015)

    Google Scholar 

  25. Stöter, F.-R., Liutkus, A., Badeau, R., Edler, B., Magron, P.: Common fate model for unison source separation. In: Proceedings of ICASSP (2016)

    Google Scholar 

  26. Uhlich, S., Porcu, M., Giron, F., Enenkl, M., Kemp, T., Takahashi, N., Mitsufuji, Y.: Improving Music Source Separation Based On Deep Neural Networks Through Data Augmentation and Network Blending (2017). Submitted to ICASSP

    Google Scholar 

  27. Grais, E., Roma, G., Simpson, A.J., Plumbley, M.: Single-channel audio source separation using deep neural network ensembles. In: Proceedings of AES 140, May 2016

    Google Scholar 

  28. Jeong, I.-Y., Lee, K.: Singing voice separation using RPCA with weighted l1-norm. In: Proceedings of LVA/ICA (2017)

    Google Scholar 

  29. Huang, P., Kim, M., Hasegawa-Johnson, M., Smaragdis, P.: Joint optimization of masks and deep recurrent neural networks for monaural source separation. IEEE/ACM Trans. Audio Speech Lang. Process. 23(12), 2136–2147 (2015)

    Article  Google Scholar 

  30. Simpson, A., Roma, G., Grais, E., Mason, R., Hummersone, C., Plumbley, M., Liutkus, A.: Evaluation of audio source separation models using hypothesis-driven non-parametric statistical methods. In: Proceedings of EUSIPCO (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antoine Liutkus .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Liutkus, A. et al. (2017). The 2016 Signal Separation Evaluation Campaign. In: Tichavský, P., Babaie-Zadeh, M., Michel, O., Thirion-Moreau, N. (eds) Latent Variable Analysis and Signal Separation. LVA/ICA 2017. Lecture Notes in Computer Science(), vol 10169. Springer, Cham. https://doi.org/10.1007/978-3-319-53547-0_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-53547-0_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-53546-3

  • Online ISBN: 978-3-319-53547-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics