Abstract
In this paper, we report the results of the 2016 community-based Signal Separation Evaluation Campaign (SiSEC 2016). This edition comprises four tasks. Three focus on the separation of speech and music audio recordings, while one concerns biomedical signals. We summarize these tasks and the performance of the submitted systems, as well as provide a small discussion concerning future trends of SiSEC.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
- 3.
More info at github.com/faroit/dsdtools.
- 4.
References
Ono, N., Koldovsky, Z., Miyabe, S., Ito, N.: The 2013 signal separation evaluation campaign. In: Proceedings of MLSP, pp. 1–6, September 2013
Ono, N., Rafii, Z., Kitamura, D., Ito, N., Liutkus, A.: The 2015 signal separation evaluation campaign. In: Vincent, E., Yeredor, A., Koldovský, Z., Tichavský, P. (eds.) LVA/ICA 2015. LNCS, vol. 9237, pp. 387–395. Springer, Heidelberg (2015). doi:10.1007/978-3-319-22482-4_45
Vincent, E., Griboval, R., Févotte, C.: Performance measurement in blind audio source separation. IEEE Trans. ASLP 14(4), 1462–1469 (2006)
Emiya, V., Vincent, E., Harlander, N., Hohmann, V.: Subjective and objective quality assessment of audio source separation. IEEE Trans. ASLP 19(7), 2046–2057 (2011)
Chan, T-S., Yeh, T-C., Fan, Z-C., Chen, H-W., Su, L., Yang, Y-H., Jang, R.: Vocal activity informed singing voice separation with the iKala dataset. In: Proceedings of ICASSP, pp. 718–722, April 2015
Durrieu, J.-L., David, B., Richard, G.: A musically motivated mid-level representation for pitch estimation and musical audio source separation. IEEE J. Sel. Top. Sig. Process. 5(6), 1180–1191 (2011)
Huang, P., Chen, S., Smaragdis, P., Hasegawa-Johnson, M.: Singing-voice separation from monaural recordings using robust principal component analysis. In: Proceedings of ICASSP, pp. 57–60, March 2012
Liutkus, A., FitzGerald, D., Rafii, Z., Daudet, L.: Scalable audio separation with light kernel additive modelling. In: Proceedings of ICASSP, pp. 76–80, April 2015
Nugraha, A., Liutkus, A., Vincent, E.: Multichannel music separation with deep neural networks. In: Proceedings of EUSIPCO (2016)
Ozerov, A., Vincent, E., Bimbot, F.: A general flexible framework for the handling of prior information in audio source separation. IEEE Trans. ASLP 20(4), 1118–1133 (2012)
Rafii, Z., Pardo, B.: REpeating pattern extraction technique (REPET): a simple method for music/voice separation. IEEE Trans. ASLP 21(1), 71–82 (2013)
Liutkus, A., Rafii, Z., Badeau, R., Pardo, B., Richard, G.: Adaptive filtering for music/voice separation exploiting the repeating musical structure. In: Proceedings of ICASSP, pp. 53–56, March 2012
Rafii, Z., Pardo, B.: Music/voice separation using the similarity matrix. In: Proceedings of ISMIR, pp. 583–588, October 2012
Wood, S., Rouat, J.: Blind speech separation with GCC-NMF. In: Proceedings of Interspeech (2016)
Cho, J., Yoo, C.D.: Underdetermined convolutive BSS: Bayes risk minimization based on a mixture of super-Gaussian posterior approximation. IEEE Trans. Audio Speech Lang. Process. 23(5), 828–839 (2011)
Adiloglu, K., Vincent, E.: “Variational Bayesian inference for source separation and robust feature extraction,” Technical report, INRIA (2012). https://hal.inria.fr/hal-00726146
Hirasawa, Y., Yasuraoka, N., Takahashi, T., Ogata, T., Okuno, H.G.: A GMM sound source model for blind speech separation in under-determined conditions. In: Theis, F., Cichocki, A., Yeredor, A., Zibulevsky, M. (eds.) LVA/ICA 2012. LNCS, vol. 7191, pp. 446–453. Springer, Heidelberg (2012). doi:10.1007/978-3-642-28551-6_55
Iso, K., Araki, S., Makino, S., Nakatani, T., Sawada, H., Yamada, T., Nakamura, A.: Blind source separation of mixed speech in a high reverberation environment. In: Proceedings of Hands-free Speech Communication and Microphone Arrays, pp. 36–39 (2011)
Cho, J., Choi, J., Yoo, C.D.: Underdetermined convolutive blind source separation using a novel mixing matrix estimation and MMSE-based source estimation. In: Proceedings of IEEE MLSP (2011)
Nesta, F., Omologo, M.: Convolutive underdetermined source separation through weighted interleaved ICA and spatio-temporal source correlation. In: Theis, F., Cichocki, A., Yeredor, A., Zibulevsky, M. (eds.) LVA/ICA 2012. LNCS, vol. 7191, pp. 222–230. Springer, Heidelberg (2012). doi:10.1007/978-3-642-28551-6_28
Knapp, C.H., Carter, G.C.: The generalized correlation method for estimation of time delay. IEEE Trans. Acousti. Speech Sig. Process. 24(4), 320–327 (1976)
Lee, D.D., Seung, H.S.: Learning the parts of objects by non-negative matrix factorization. Nature 401, 788–791 (1999)
Blandin, C., Ozerov, A., Vincent, E.: Multi-source TDOA estimation in reverberant audio using angular spectra and clustering. Sig. Process. 92(8), 1950–1960 (2012)
Duong, H.-T.T., Nguyen, Q.-C., Nguyen, C.-P., Tran, T.-H., Duong, N.Q.K.: Speech enhancement based on nonnegative matrix factorization with mixed group sparsity constraint. In: Proceedings of ACM International Symposium on Information and Communication Technology, pp. 247–251 (2015)
Stöter, F.-R., Liutkus, A., Badeau, R., Edler, B., Magron, P.: Common fate model for unison source separation. In: Proceedings of ICASSP (2016)
Uhlich, S., Porcu, M., Giron, F., Enenkl, M., Kemp, T., Takahashi, N., Mitsufuji, Y.: Improving Music Source Separation Based On Deep Neural Networks Through Data Augmentation and Network Blending (2017). Submitted to ICASSP
Grais, E., Roma, G., Simpson, A.J., Plumbley, M.: Single-channel audio source separation using deep neural network ensembles. In: Proceedings of AES 140, May 2016
Jeong, I.-Y., Lee, K.: Singing voice separation using RPCA with weighted l1-norm. In: Proceedings of LVA/ICA (2017)
Huang, P., Kim, M., Hasegawa-Johnson, M., Smaragdis, P.: Joint optimization of masks and deep recurrent neural networks for monaural source separation. IEEE/ACM Trans. Audio Speech Lang. Process. 23(12), 2136–2147 (2015)
Simpson, A., Roma, G., Grais, E., Mason, R., Hummersone, C., Plumbley, M., Liutkus, A.: Evaluation of audio source separation models using hypothesis-driven non-parametric statistical methods. In: Proceedings of EUSIPCO (2016)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Liutkus, A. et al. (2017). The 2016 Signal Separation Evaluation Campaign. In: Tichavský, P., Babaie-Zadeh, M., Michel, O., Thirion-Moreau, N. (eds) Latent Variable Analysis and Signal Separation. LVA/ICA 2017. Lecture Notes in Computer Science(), vol 10169. Springer, Cham. https://doi.org/10.1007/978-3-319-53547-0_31
Download citation
DOI: https://doi.org/10.1007/978-3-319-53547-0_31
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-53546-3
Online ISBN: 978-3-319-53547-0
eBook Packages: Computer ScienceComputer Science (R0)