Nothing Special   »   [go: up one dir, main page]

Skip to main content

Higher-Order Block Term Decomposition for Spatially Folded fMRI Data

  • Conference paper
  • First Online:
Latent Variable Analysis and Signal Separation (LVA/ICA 2017)

Abstract

The growing use of neuroimaging technologies generates a massive amount of biomedical data that exhibit high dimensionality. Tensor-based analysis of brain imaging data has been proved quite effective in exploiting their multiway nature. The advantages of tensorial methods over matrix-based approaches have also been demonstrated in the context of functional magnetic resonance imaging (fMRI) data analysis. However, such methods can become ineffective in demanding scenarios, involving, e.g., strong noise and/or significant overlapping of activated regions. This paper aims at investigating the possible gains that can be obtained from a better exploitation of the spatial dimension, through a higher (than 3)-order tensor modeling of the fMRI signals. In this context, a higher-order Block Term Decomposition (BTD) is applied, for the first time in fMRI analysis. Its effectiveness in handling strong instances of noise is demonstrated via extensive simulation results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lindquist, M.A.: The statistical analysis of fMRI data. Stat. Sci. 23, 439–464 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Theodoridis, S.: Machine Learning: A Bayesian and Optimization Perspective. Academic Press, Boston (2015)

    Google Scholar 

  3. Andersen, A.H., Rayens, W.S.: Structure-seeking multilinear methods for the analysis of fMRI data. NeuroImage 22, 728–739 (2004)

    Article  Google Scholar 

  4. Calhoun, V.D., Adalı, T.: Unmixing fMRI with independent component analysis. IEEE Eng. Med. Biol. Mag. 25, 79–90 (2006)

    Article  Google Scholar 

  5. Andersen, K.W., Mørup, M., Siebner, H., Madsen, K.H., Hansen, L.K.: Identifying modular relations in complex brain networks. In: IEEE International Workshop on Machine Learning for Signal Processing (MLSP) (2012)

    Google Scholar 

  6. Sidiropoulos, N., Bro, R.: On the uniqueness of multilinear decomposition of N-way arrays. J. Chemom. 14, 229–239 (2000)

    Article  Google Scholar 

  7. Cichocki, A., Mandic, D., De Lathauwer, L., Zhou, G., Zhao, Q., Caiafa, C., Phan, H.A.: Tensor decompositions for signal processing applications: from two-way to multiway component analysis. IEEE Signal Process. Mag. 32, 145–163 (2015)

    Article  Google Scholar 

  8. De Lathauwer, L.: Decompositions of a higher-order tensor in block terms-Part I: lemmas for partitioned matrices. SIAM J. Matrix Anal. Appl. 30, 1022–1032 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. De Lathauwer, L.: Decompositions of a higher-order tensor in block terms-Part II: definitions and uniqueness. SIAM J. Matrix Anal. Appl. 30, 1033–1066 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Lathauwer, L.: Block component analysis, a new concept for blind source separation. In: Theis, F., Cichocki, A., Yeredor, A., Zibulevsky, M. (eds.) LVA/ICA 2012. LNCS, vol. 7191, pp. 1–8. Springer, Heidelberg (2012). doi:10.1007/978-3-642-28551-6_1

    Chapter  Google Scholar 

  11. Harshman, R.A.: Foundations of the PARAFAC procedure: models and conditions for an “explanatory” multi-modal factor analysis. UCLA Work. Papers in Phonetics, pp. 1–84(1970)

    Google Scholar 

  12. Kruskal, J.B.: Three-way arrays: rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics. Linear Algebra Appl. 18(2), 95–138 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  13. Stegeman, A.: Comparing Independent Component Analysis and the PARAFAC model for artificial multi-subject fMRI data. Unpublished Technical report, University of Groningen (2007)

    Google Scholar 

  14. Helwig, N.E., Hong, S.: A critique of tensor probabilistic independent component analysis: implications and recommendations for multi-subject fmri data analysis. J. Neurosci. Methods 2, 263–273 (2013)

    Article  Google Scholar 

  15. Bro, R., Kiers, H.: A new efficient method for determining the number of components in PARAFAC models. J. Chemom. 17(5), 274–286 (2003)

    Article  Google Scholar 

  16. Castellanos, J.L., Gmez, S., Guerra, V.: The triangle method for finding the corner of the L-curve. Appl. Numer. Math. 43(4), 359–373 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. Beckmann, C., Smith, S.: Tensorial extensions of independent component analysis for multisubject fMRI analysis. NeuroImage 25, 294–311 (2005)

    Article  Google Scholar 

  18. Beckmann, C., Smith, S.: Probabilistic independent component analysis for functional magnetic resonance imaging. IEEE Trans. Med. Imaging 23(2), 137–152 (2004)

    Article  Google Scholar 

  19. Phan, A.H., Tichavsky, P., Cichocki, A.: CANDECOMP/PARAFAC decomposition of high-order tensors through tensor reshaping. IEEE Trans. Signal Process. 61(19), 4847–4860 (2013)

    Article  Google Scholar 

  20. Tichavsky, P., Phan, A.H., Koldovsky, Z.: Cramér-Rao-induced bounds for CANDECOMP/PARAFAC tensor decomposition. IEEE Trans. Signal Process. 61(8), 1986–1997 (2013)

    Article  Google Scholar 

  21. Norgaard, L.: Classification and prediction of quality and process parameters of thick juice and beet sugar by fluorescence spectroscopy and chemometrics. Zuckerindustrie 120(11), 970–981 (1995)

    Google Scholar 

  22. Phillips, N.C.: Gasthuisberg University Hospital raises fMRI to new level with Intera 3.0 T. http://netforum.healthcare.philips.com/

  23. Hunyadi, B., Camps, D., Sorber, L., Van Paesschen, W., De Vos, M., Van Huffel, S., De Lathauwer, L.: Block term decomposition for modelling epileptic seizures. EURASIP J. Adv. Signal Process. (2014). doi:10.1186/1687-6180-2014-139

  24. Phan, A.H., Cichocki, A., Zdunek, R., Lehky, S.: From basis components to complex structural patterns. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Vancouver (2013)

    Google Scholar 

  25. Brie, D., Miron, S., Caland, F., Mustin, C.: An uniqueness condition for the 4-way CANDECOMP/PARAFAC model with collinear loadings in three modes. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Prague (2011)

    Google Scholar 

  26. Sorber, L., Barel, M.V., De Lathauwer, L.: Structured data fusion. IEEE J. Sel. Topics Signal Process. 9, 586–600 (2015)

    Article  Google Scholar 

  27. Vervliet, N., Debals, O., Sorber, L., Van Barel, M., De Lathauwer, L.: Tensorlab user guide (2016). http://www.tensorlab.net

Download references

Acknowledgments

The authors would like to thank Profs. A. Stegeman and N. Helwig for providing the datasets used in [13] and [14], respectively, and Prof. S. Van Huffel for her critical comments on earlier version of this paper. Constructive comments from the reviewers are also gratefully acknowledged. This research has been funded by the European Union’s Seventh Framework Programme (H2020-MSCA-ITN-2014) under grant agreement No. 642685 MacSeNet.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christos Chatzichristos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Chatzichristos, C., Kofidis, E., Kopsinis, Y., Moreno, M.M., Theodoridis, S. (2017). Higher-Order Block Term Decomposition for Spatially Folded fMRI Data. In: Tichavský, P., Babaie-Zadeh, M., Michel, O., Thirion-Moreau, N. (eds) Latent Variable Analysis and Signal Separation. LVA/ICA 2017. Lecture Notes in Computer Science(), vol 10169. Springer, Cham. https://doi.org/10.1007/978-3-319-53547-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-53547-0_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-53546-3

  • Online ISBN: 978-3-319-53547-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics