Abstract
Recapture image forensics has drawn much attention in public security forensics. Although some algorithms have been proposed to deal with it, there is still great challenge for small-size images. In this paper, we propose a generalized model for small-size recapture image forensics based on Laplacian Convolutional Neural Networks. Different from other Convolutional Neural Networks models, We put signal enhancement layer into Convolutional Neural Networks structure and Laplacian filter is used in the signal enhancement layer. We test the proposed method on four kinds of small-size image databases. The experimental results have demonstrate that the proposed algorithm is effective. The detection accuracies for different image size database are all above 95%.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Yu, H., Ng, T.T., Sun, Q.: Recapture photo detection using specularity distribution. In: 15th IEEE International Conference on Image Processing, pp. 3140–3143 (2008)
Gao, X., Ng, T.T., Qiu, B., Chang, S.F.: Single-view recaptured image detection based on physics-based features. In: 2010 IEEE International Conference on Multimedia and Expo (ICME), pp. 1469–1474. IEEE (2010)
Cao, H., Alex, K.C.: Identification of recaptured photographs on LCD screens. In: IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 1790–1793 (2010)
Li, R., Ni, R., Zhao, Y.: An effective detection method based on physical traits of recaptured images on LCD screens. In: Shi, Y.-Q., Kim, H.J., Pérez-González, F., Echizen, I. (eds.) IWDW 2015. LNCS, vol. 9569, pp. 107–116. Springer, Heidelberg (2016). doi:10.1007/978-3-319-31960-5_10
Chen, J., Kang, X., Liu, Y., Wang, Z.J.: Median filtering forensics based on convolutional neural networks. IEEE Signal Process. Lett. 22(11), 1849–1853 (2015)
Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. arXiv preprint arXiv:1512.03385 (2015)
An open source framework of deep learning. http://caffe.berkeleyvision.org/
Acknowledgments
This work was supported in part by National NSF of China (61332012, 61272355, 61672090), Fundamental Research Funds for the Central Universities (2015JBZ002), the PAPD, the CICAEET. We greatly acknowledge the support of NVIDIA Corporation with the donation of the Tesla K40 GPU used for this research.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Yang, P., Ni, R., Zhao, Y. (2017). Recapture Image Forensics Based on Laplacian Convolutional Neural Networks. In: Shi, Y., Kim, H., Perez-Gonzalez, F., Liu, F. (eds) Digital Forensics and Watermarking. IWDW 2016. Lecture Notes in Computer Science(), vol 10082. Springer, Cham. https://doi.org/10.1007/978-3-319-53465-7_9
Download citation
DOI: https://doi.org/10.1007/978-3-319-53465-7_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-53464-0
Online ISBN: 978-3-319-53465-7
eBook Packages: Computer ScienceComputer Science (R0)